BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 29329053)

  • 21. Surface deformation tracking in monocular laparoscopic video.
    Liu Z; Gao W; Zhu J; Yu Z; Fu Y
    Med Image Anal; 2023 May; 86():102775. PubMed ID: 36848721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic tracking of an organ section with an ultrasound probe: compensation of respiratory motion.
    Nadeau C; Krupa A; Gangloff J
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):57-64. PubMed ID: 22003600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Moving object tracking in clinical scenarios: application to cardiac surgery and cerebral aneurysm clipping.
    Dakua SP; Abinahed J; Zakaria A; Balakrishnan S; Younes G; Navkar N; Al-Ansari A; Zhai X; Bensaali F; Amira A
    Int J Comput Assist Radiol Surg; 2019 Dec; 14(12):2165-2176. PubMed ID: 31309385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstruction of a 3D surface from video that is robust to missing data and outliers: application to minimally invasive surgery using stereo and mono endoscopes.
    Hu M; Penney G; Figl M; Edwards P; Bello F; Casula R; Rueckert D; Hawkes D
    Med Image Anal; 2012 Apr; 16(3):597-611. PubMed ID: 21195656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vision-based hand-eye calibration for robot-assisted minimally invasive surgery.
    Sun Y; Pan B; Guo Y; Fu Y; Niu G
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2061-2069. PubMed ID: 32808149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Minimally invasive total knee arthroplasty: the importance of instrumentation.
    Tria AJ
    Orthop Clin North Am; 2004 Apr; 35(2):227-34. PubMed ID: 15062708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gaze-contingent motor channelling and haptic constraints for minimally invasive robotic surgery.
    Mylonas GP; Kwok KW; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):676-83. PubMed ID: 18982663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soft tissue motion tracking with application to tablet-based incision planning in laser surgery.
    Schoob A; Laves MH; Kahrs LA; Ortmaier T
    Int J Comput Assist Radiol Surg; 2016 Dec; 11(12):2325-2337. PubMed ID: 27250855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of time-of-flight camera for navigating robots in computer-aided surgery: monitoring the soft tissue envelope of minimally invasive hip approach in a cadaver study.
    Putzer D; Klug S; Moctezuma JL; Nogler M
    Surg Innov; 2014 Dec; 21(6):630-6. PubMed ID: 24667523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Image-based laparoscopic tool detection and tracking using convolutional neural networks: a review of the literature.
    Yang C; Zhao Z; Hu S
    Comput Assist Surg (Abingdon); 2020 Dec; 25(1):15-28. PubMed ID: 32886540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of perceptual quality for gaze-contingent motion stabilization in robotic assisted minimally invasive surgery.
    Mylonas GP; Stoyanov D; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):660-7. PubMed ID: 18044625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous stereoscope localization and soft-tissue mapping for minimal invasive surgery.
    Mountney P; Stoyanov D; Davison A; Yang GZ
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):347-54. PubMed ID: 17354909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.
    Ryu J; Choi J; Kim HC
    Artif Organs; 2013 Jan; 37(1):107-12. PubMed ID: 23043484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From medical images to minimally invasive intervention: Computer assistance for robotic surgery.
    Lee SL; Lerotic M; Vitiello V; Giannarou S; Kwok KW; Visentini-Scarzanella M; Yang GZ
    Comput Med Imaging Graph; 2010 Jan; 34(1):33-45. PubMed ID: 19699056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gaze gesture based human robot interaction for laparoscopic surgery.
    Fujii K; Gras G; Salerno A; Yang GZ
    Med Image Anal; 2018 Feb; 44():196-214. PubMed ID: 29277075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Occlusion-robust scene flow-based tissue deformation recovery incorporating a mesh optimization model.
    Chen J; Hara K; Kobayashi E; Sakuma I; Tomii N
    Int J Comput Assist Radiol Surg; 2023 Jun; 18(6):1043-1051. PubMed ID: 37067752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust feature tracking on the beating heart for a robotic-guided endoscope.
    Elhawary H; Popovic A
    Int J Med Robot; 2011 Dec; 7(4):459-68. PubMed ID: 22113979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Context specific descriptors for tracking deforming tissue.
    Mountney P; Yang GZ
    Med Image Anal; 2012 Apr; 16(3):550-61. PubMed ID: 21641270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time tracking of surgical instruments based on spatio-temporal context and deep learning.
    Zhao Z; Chen Z; Voros S; Cheng X
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):20-29. PubMed ID: 30760050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dense soft tissue 3D reconstruction refined with super-pixel segmentation for robotic abdominal surgery.
    Penza V; Ortiz J; Mattos LS; Forgione A; De Momi E
    Int J Comput Assist Radiol Surg; 2016 Feb; 11(2):197-206. PubMed ID: 26410837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.