BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2932918)

  • 1. Effect of glucose or fructose feeding on cholesterol synthesis in diabetic animals.
    Feingold KR; Moser AH
    Am J Physiol; 1985 Nov; 249(5 Pt 1):G634-41. PubMed ID: 2932918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of streptozotocin diabetes on intestinal 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in the rat.
    Nakayama H; Nakagawa S
    Diabetes; 1977 May; 26(5):439-44. PubMed ID: 140087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of protein synthesis in the carbohydrate-induced changes in the activities of acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase in cultured rat hepatocytes.
    Spence JT; Koudelka AP; Tseng-Crank JC
    Biochem J; 1985 May; 227(3):939-47. PubMed ID: 2860899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased sensitivity to dietary cholesterol in diabetic and hypothyroid rats associated with low levels of hepatic HMG-CoA reductase expression.
    Ness GC; Gertz KR
    Exp Biol Med (Maywood); 2004 May; 229(5):407-11. PubMed ID: 15096652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of acylcoenzyme A. Cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by lipoproteins in the intestine of parabiont rats.
    Purdy BH; Field FJ
    J Clin Invest; 1984 Aug; 74(2):351-7. PubMed ID: 6746898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diabetes increases hepatic hydroxymethyl glutaryl coenzyme A reductase protein and mRNA levels in the small intestine.
    Feingold KR; Wilson DE; Wood LC; Kwong LK; Moser AH; Grunfeld C
    Metabolism; 1994 Apr; 43(4):450-4. PubMed ID: 8159102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genes that affect cholesterol synthesis, cholesterol absorption, and chylomicron assembly: the relationship between the liver and intestine in control and streptozotosin diabetic rats.
    Lally S; Owens D; Tomkin GH
    Metabolism; 2007 Mar; 56(3):430-8. PubMed ID: 17292734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal and hepatic cholesterol synthesis in the alloxan diabetic rat.
    Goodman MW; Michels LD; Keane WF
    Proc Soc Exp Biol Med; 1982 Jul; 170(3):286-90. PubMed ID: 7045882
    [No Abstract]   [Full Text] [Related]  

  • 9. Increased rates of hepatic cholesterogenesis and fatty acid synthesis in septic rats in vivo: evidence for the possible involvement of insulin.
    de Vasconcelos PR; Kettlewell MG; Gibbons GF; Williamson DH
    Clin Sci (Lond); 1989 Feb; 76(2):205-11. PubMed ID: 2647366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diurnal changes in the rate of cholesterogenesis in hepatocytes from fed and starved rats: effects of precursors and pancreatic hormones in vitro.
    Björnsson OG; Pullinger CR; Gibbons GF
    Arch Biochem Biophys; 1985 Apr; 238(1):135-45. PubMed ID: 3885855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some effects of chitosan on liver function in the rat.
    LeHoux JG; Grondin F
    Endocrinology; 1993 Mar; 132(3):1078-84. PubMed ID: 7679967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cholesterol feeding and alterations in bile acid homeostasis on de novo sterologenesis in diabetic rats.
    Feingold KR; Wiley MH; Moser AH; Lear SR
    Diabetes; 1983 Apr; 32(4):368-76. PubMed ID: 6832491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preventing hyperphagia normalizes 3-hydroxy-3-methylglutaryl-CoA reductase activity in small intestine and liver of diabetic rats.
    Young NL; Saudek CD; Walters L; Lapeyrolerie J; Chang V
    J Lipid Res; 1982 Aug; 23(6):831-8. PubMed ID: 6957513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of excess dietary tyrosine or certain xenobiotics on the cholesterogenesis in rats.
    Nagaoka S; Masaki H; Aoyama Y; Yoshida A
    J Nutr; 1986 May; 116(5):726-32. PubMed ID: 3701455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic cholesterol synthesis and hydroxymethylglutaryl CoA reductase activity after injection of methylazoxymethanol acetate.
    Gregg RG; Wilce PA
    Cancer Biochem Biophys; 1987 Sep; 9(3):281-7. PubMed ID: 3435900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo cholesterol synthesis in three different animal models of diabetes.
    Feingold KR; Lear SR; Moser AH
    Diabetologia; 1984 Mar; 26(3):234-9. PubMed ID: 6714541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intestinal and hepatic cholesterogenesis in hypercholesterolemic dyslipidemia of experimental diabetes in dogs.
    Kwong LK; Feingold KR; Peric-Golia L; Le T; Karkas JD; Alberts AW; Wilson DE
    Diabetes; 1991 Dec; 40(12):1630-9. PubMed ID: 1756903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of cholesterol synthesis in the small intestine of diabetic rats.
    Feingold KR; Moser AH
    Am J Physiol; 1984 Nov; 247(5 Pt 1):G494-501. PubMed ID: 6496740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of blackgram fiber (Phaseolus mungo) on hepatic hydroxymethylglutaryl-CoA reductase activity, cholesterogenesis and cholesterol degradation in rats.
    Thomas M; Leelamma S; Kurup PA
    J Nutr; 1983 Jun; 113(6):1104-8. PubMed ID: 6304266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary cholesterol regulates hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in rats primarily at the level of translation.
    Chambers CM; Ness GC
    Arch Biochem Biophys; 1998 Jun; 354(2):317-22. PubMed ID: 9637742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.