These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 29329273)
1. Transcriptomics Evidence for Common Pathways in Human Major Depressive Disorder and Glioblastoma. Xie Y; Wang L; Xie Z; Zeng C; Shu K Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29329273 [TBL] [Abstract][Full Text] [Related]
2. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data. Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134 [TBL] [Abstract][Full Text] [Related]
3. Identification of hub genes and regulatory factors of glioblastoma multiforme subgroups by RNA-seq data analysis. Li Y; Min W; Li M; Han G; Dai D; Zhang L; Chen X; Wang X; Zhang Y; Yue Z; Liu J Int J Mol Med; 2016 Oct; 38(4):1170-8. PubMed ID: 27572852 [TBL] [Abstract][Full Text] [Related]
4. LncRNA and mRNA interaction study based on transcriptome profiles reveals potential core genes in the pathogenesis of human glioblastoma multiforme. Yan Y; Zhang L; Jiang Y; Xu T; Mei Q; Wang H; Qin R; Zou Y; Hu G; Chen J; Lu Y J Cancer Res Clin Oncol; 2015 May; 141(5):827-38. PubMed ID: 25378224 [TBL] [Abstract][Full Text] [Related]
5. PI3 kinase pathway regulated miRNome in glioblastoma: identification of miR-326 as a tumour suppressor miRNA. Nawaz Z; Patil V; Paul Y; Hegde AS; Arivazhagan A; Santosh V; Somasundaram K Mol Cancer; 2016 Nov; 15(1):74. PubMed ID: 27871300 [TBL] [Abstract][Full Text] [Related]
6. LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Han L; Zhang K; Shi Z; Zhang J; Zhu J; Zhu S; Zhang A; Jia Z; Wang G; Yu S; Pu P; Dong L; Kang C Int J Oncol; 2012 Jun; 40(6):2004-12. PubMed ID: 22446686 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic and Proteomic Data Integration and Two-Dimensional Molecular Maps with Regulatory and Functional Linkages: Application to Cell Proliferation and Invasion Networks in Glioblastoma. Gupta MK; Jayaram S; Reddy DN; Polisetty RV; Sirdeshmukh R J Proteome Res; 2015 Dec; 14(12):5017-27. PubMed ID: 26464075 [TBL] [Abstract][Full Text] [Related]
8. Discovering gene-environment interactions in glioblastoma through a comprehensive data integration bioinformatics method. Kunkle B; Yoo C; Roy D Neurotoxicology; 2013 Mar; 35():1-14. PubMed ID: 23261424 [TBL] [Abstract][Full Text] [Related]
9. miR-135b suppresses tumorigenesis in glioblastoma stem-like cells impairing proliferation, migration and self-renewal. Lulli V; Buccarelli M; Martini M; Signore M; Biffoni M; Giannetti S; Morgante L; Marziali G; Ilari R; Pagliuca A; Larocca LM; De Maria R; Pallini R; Ricci-Vitiani L Oncotarget; 2015 Nov; 6(35):37241-56. PubMed ID: 26437223 [TBL] [Abstract][Full Text] [Related]
10. Identification of novel human glioblastoma-specific transcripts by serial analysis of gene expression data mining. Su Y; Xiong J; Bing Z; Zeng X; Zhang Y; Fu X; Peng X Cancer Biomark; 2013; 13(5):367-75. PubMed ID: 24440977 [TBL] [Abstract][Full Text] [Related]
11. Screening of differentially expressed genes associated with human glioblastoma and functional analysis using a DNA microarray. Wang L; Wei B; Hu G; Wang L; Bi M; Sun Z; Jin Y Mol Med Rep; 2015 Aug; 12(2):1991-6. PubMed ID: 25901754 [TBL] [Abstract][Full Text] [Related]
12. Blood-based gene expression signatures of medication-free outpatients with major depressive disorder: integrative genome-wide and candidate gene analyses. Hori H; Sasayama D; Teraishi T; Yamamoto N; Nakamura S; Ota M; Hattori K; Kim Y; Higuchi T; Kunugi H Sci Rep; 2016 Jan; 6():18776. PubMed ID: 26728011 [TBL] [Abstract][Full Text] [Related]
13. Isoform-level brain expression profiling of the spermidine/spermine N1-Acetyltransferase1 (SAT1) gene in major depression and suicide. Pantazatos SP; Andrews SJ; Dunning-Broadbent J; Pang J; Huang YY; Arango V; Nagy PL; John Mann J Neurobiol Dis; 2015 Jul; 79():123-34. PubMed ID: 25959060 [TBL] [Abstract][Full Text] [Related]
14. Differential expression of MicroRNAs in patients with glioblastoma after concomitant chemoradiotherapy. Park EC; Kim G; Jung J; Wang K; Lee S; Jeon SS; Lee ZW; Kim SI; Kim S; Oh YT; Shin JH; Jang HS; Choi BO; Kim GH OMICS; 2013 May; 17(5):259-68. PubMed ID: 23586679 [TBL] [Abstract][Full Text] [Related]
15. Expression analysis of all protease genes reveals cathepsin K to be overexpressed in glioblastoma. Verbovšek U; Motaln H; Rotter A; Atai NA; Gruden K; Van Noorden CJ; Lah TT PLoS One; 2014; 9(10):e111819. PubMed ID: 25356585 [TBL] [Abstract][Full Text] [Related]
16. Identification and functional characterization of lncRNAs acting as ceRNA involved in the malignant progression of glioblastoma multiforme. Zhang K; Li Q; Kang X; Wang Y; Wang S Oncol Rep; 2016 Nov; 36(5):2911-2925. PubMed ID: 27600337 [TBL] [Abstract][Full Text] [Related]
17. LTBP1 plays a potential bridge between depressive disorder and glioblastoma. Fu X; Zhang P; Song H; Wu C; Li S; Li S; Yan C J Transl Med; 2020 Oct; 18(1):391. PubMed ID: 33059753 [TBL] [Abstract][Full Text] [Related]
18. Revealing radiotherapy- and chemoradiation-induced pathway dynamics in glioblastoma by analyzing multiple differential networks. Zhou J; Chen C; Li HF; Hu YJ; Xie HL Mol Med Rep; 2017 Jul; 16(1):696-702. PubMed ID: 28560382 [TBL] [Abstract][Full Text] [Related]
19. MiR-338-5p sensitizes glioblastoma cells to radiation through regulation of genes involved in DNA damage response. Besse A; Sana J; Lakomy R; Kren L; Fadrus P; Smrcka M; Hermanova M; Jancalek R; Reguli S; Lipina R; Svoboda M; Slampa P; Slaby O Tumour Biol; 2016 Jun; 37(6):7719-27. PubMed ID: 26692101 [TBL] [Abstract][Full Text] [Related]
20. MicroRNA‑543 inhibits proliferation, invasion and induces apoptosis of glioblastoma cells by directly targeting ADAM9. Ji T; Zhang X; Li W Mol Med Rep; 2017 Nov; 16(5):6419-6427. PubMed ID: 28849046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]