BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29329273)

  • 1. Transcriptomics Evidence for Common Pathways in Human Major Depressive Disorder and Glioblastoma.
    Xie Y; Wang L; Xie Z; Zeng C; Shu K
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29329273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of hub genes and regulatory factors of glioblastoma multiforme subgroups by RNA-seq data analysis.
    Li Y; Min W; Li M; Han G; Dai D; Zhang L; Chen X; Wang X; Zhang Y; Yue Z; Liu J
    Int J Mol Med; 2016 Oct; 38(4):1170-8. PubMed ID: 27572852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LncRNA and mRNA interaction study based on transcriptome profiles reveals potential core genes in the pathogenesis of human glioblastoma multiforme.
    Yan Y; Zhang L; Jiang Y; Xu T; Mei Q; Wang H; Qin R; Zou Y; Hu G; Chen J; Lu Y
    J Cancer Res Clin Oncol; 2015 May; 141(5):827-38. PubMed ID: 25378224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PI3 kinase pathway regulated miRNome in glioblastoma: identification of miR-326 as a tumour suppressor miRNA.
    Nawaz Z; Patil V; Paul Y; Hegde AS; Arivazhagan A; Santosh V; Somasundaram K
    Mol Cancer; 2016 Nov; 15(1):74. PubMed ID: 27871300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis.
    Han L; Zhang K; Shi Z; Zhang J; Zhu J; Zhu S; Zhang A; Jia Z; Wang G; Yu S; Pu P; Dong L; Kang C
    Int J Oncol; 2012 Jun; 40(6):2004-12. PubMed ID: 22446686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic and Proteomic Data Integration and Two-Dimensional Molecular Maps with Regulatory and Functional Linkages: Application to Cell Proliferation and Invasion Networks in Glioblastoma.
    Gupta MK; Jayaram S; Reddy DN; Polisetty RV; Sirdeshmukh R
    J Proteome Res; 2015 Dec; 14(12):5017-27. PubMed ID: 26464075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovering gene-environment interactions in glioblastoma through a comprehensive data integration bioinformatics method.
    Kunkle B; Yoo C; Roy D
    Neurotoxicology; 2013 Mar; 35():1-14. PubMed ID: 23261424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR-135b suppresses tumorigenesis in glioblastoma stem-like cells impairing proliferation, migration and self-renewal.
    Lulli V; Buccarelli M; Martini M; Signore M; Biffoni M; Giannetti S; Morgante L; Marziali G; Ilari R; Pagliuca A; Larocca LM; De Maria R; Pallini R; Ricci-Vitiani L
    Oncotarget; 2015 Nov; 6(35):37241-56. PubMed ID: 26437223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of novel human glioblastoma-specific transcripts by serial analysis of gene expression data mining.
    Su Y; Xiong J; Bing Z; Zeng X; Zhang Y; Fu X; Peng X
    Cancer Biomark; 2013; 13(5):367-75. PubMed ID: 24440977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of differentially expressed genes associated with human glioblastoma and functional analysis using a DNA microarray.
    Wang L; Wei B; Hu G; Wang L; Bi M; Sun Z; Jin Y
    Mol Med Rep; 2015 Aug; 12(2):1991-6. PubMed ID: 25901754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood-based gene expression signatures of medication-free outpatients with major depressive disorder: integrative genome-wide and candidate gene analyses.
    Hori H; Sasayama D; Teraishi T; Yamamoto N; Nakamura S; Ota M; Hattori K; Kim Y; Higuchi T; Kunugi H
    Sci Rep; 2016 Jan; 6():18776. PubMed ID: 26728011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoform-level brain expression profiling of the spermidine/spermine N1-Acetyltransferase1 (SAT1) gene in major depression and suicide.
    Pantazatos SP; Andrews SJ; Dunning-Broadbent J; Pang J; Huang YY; Arango V; Nagy PL; John Mann J
    Neurobiol Dis; 2015 Jul; 79():123-34. PubMed ID: 25959060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of MicroRNAs in patients with glioblastoma after concomitant chemoradiotherapy.
    Park EC; Kim G; Jung J; Wang K; Lee S; Jeon SS; Lee ZW; Kim SI; Kim S; Oh YT; Shin JH; Jang HS; Choi BO; Kim GH
    OMICS; 2013 May; 17(5):259-68. PubMed ID: 23586679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression analysis of all protease genes reveals cathepsin K to be overexpressed in glioblastoma.
    Verbovšek U; Motaln H; Rotter A; Atai NA; Gruden K; Van Noorden CJ; Lah TT
    PLoS One; 2014; 9(10):e111819. PubMed ID: 25356585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and functional characterization of lncRNAs acting as ceRNA involved in the malignant progression of glioblastoma multiforme.
    Zhang K; Li Q; Kang X; Wang Y; Wang S
    Oncol Rep; 2016 Nov; 36(5):2911-2925. PubMed ID: 27600337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LTBP1 plays a potential bridge between depressive disorder and glioblastoma.
    Fu X; Zhang P; Song H; Wu C; Li S; Li S; Yan C
    J Transl Med; 2020 Oct; 18(1):391. PubMed ID: 33059753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing radiotherapy- and chemoradiation-induced pathway dynamics in glioblastoma by analyzing multiple differential networks.
    Zhou J; Chen C; Li HF; Hu YJ; Xie HL
    Mol Med Rep; 2017 Jul; 16(1):696-702. PubMed ID: 28560382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MiR-338-5p sensitizes glioblastoma cells to radiation through regulation of genes involved in DNA damage response.
    Besse A; Sana J; Lakomy R; Kren L; Fadrus P; Smrcka M; Hermanova M; Jancalek R; Reguli S; Lipina R; Svoboda M; Slampa P; Slaby O
    Tumour Biol; 2016 Jun; 37(6):7719-27. PubMed ID: 26692101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA‑543 inhibits proliferation, invasion and induces apoptosis of glioblastoma cells by directly targeting ADAM9.
    Ji T; Zhang X; Li W
    Mol Med Rep; 2017 Nov; 16(5):6419-6427. PubMed ID: 28849046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.