These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29329349)

  • 1. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016.
    Wohland J; Reyers M; Märker C; Witthaut D
    PLoS One; 2018; 13(1):e0190707. PubMed ID: 29329349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to develop renewable power in China? A cost-effective perspective.
    Cong RG; Shen S
    ScientificWorldJournal; 2014; 2014():946932. PubMed ID: 24578672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America.
    Barbosa LS; Bogdanov D; Vainikka P; Breyer C
    PLoS One; 2017; 12(3):e0173820. PubMed ID: 28329023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacity factors for electrical power generation from renewable and nonrenewable sources.
    Bolson N; Prieto P; Patzek T
    Proc Natl Acad Sci U S A; 2022 Dec; 119(52):e2205429119. PubMed ID: 36538483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wind and Solar Resource Droughts in California Highlight the Benefits of Long-Term Storage and Integration with the Western Interconnect.
    Rinaldi KZ; Dowling JA; Ruggles TH; Caldeira K; Lewis NS
    Environ Sci Technol; 2021 May; 55(9):6214-6226. PubMed ID: 33822592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of Inter-annual Wind and Solar Variations on the European Power System.
    Collins S; Deane P; Ó Gallachóir B; Pfenninger S; Staffell I
    Joule; 2018 Oct; 2(10):2076-2090. PubMed ID: 30370421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the potential of low-carbon technologies in the German energy system.
    Kumar S; Loosen M; Madlener R
    J Environ Manage; 2020 May; 262():110345. PubMed ID: 32250820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supply-side options to reduce land requirements of fully renewable electricity in Europe.
    Tröndle T
    PLoS One; 2020; 15(8):e0236958. PubMed ID: 32760117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SWITCH-China: A Systems Approach to Decarbonizing China's Power System.
    He G; Avrin AP; Nelson JH; Johnston J; Mileva A; Tian J; Kammen DM
    Environ Sci Technol; 2016 Jun; 50(11):5467-73. PubMed ID: 27157000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Least-cost targets and avoided fossil fuel capacity in India's pursuit of renewable energy.
    Deshmukh R; Phadke A; Callaway DS
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switch: a planning tool for power systems with large shares of intermittent renewable energy.
    Fripp M
    Environ Sci Technol; 2012 Jun; 46(11):6371-8. PubMed ID: 22506835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating an economic application of renewable generated hydrogen: A way forward for green economic performance and policy measures.
    Wu B; Zhai B; Mu H; Peng X; Wang C; Patwary AK
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):15144-15158. PubMed ID: 34628612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes.
    Jacobson MZ; Delucchi MA; Cameron MA; Frew BA
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15060-5. PubMed ID: 26598655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A technical, economic, and environmental performance of grid-connected hybrid (photovoltaic-wind) power system in Algeria.
    Saheb-Koussa D; Koussa M; Said N
    ScientificWorldJournal; 2013; 2013():123160. PubMed ID: 24489488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling up renewable energy in Africa: measuring wind energy through econometric approach.
    Abbas Q; Khan AR; Bashir A; Alemzero DA; Sun H; Iram R; Iqbal N
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36282-36294. PubMed ID: 32556986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inefficient Building Electrification Will Require Massive Buildout of Renewable Energy and Seasonal Energy Storage.
    Buonocore JJ; Salimifard P; Magavi Z; Allen JG
    Sci Rep; 2022 Jul; 12(1):11931. PubMed ID: 35831376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A case study of Australia's emissions reduction policies - An electricity planner's perspective.
    Byrom S; Bongers GD; Dargusch P; Garnett A; Boston A
    J Environ Manage; 2020 Dec; 276():111323. PubMed ID: 32932067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep decarbonization of urban energy systems through renewable energy and sector-coupling flexibility strategies.
    Arabzadeh V; Mikkola J; Jasiūnas J; Lund PD
    J Environ Manage; 2020 Apr; 260():110090. PubMed ID: 32090816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable renewable energy penetration impact on productivity: A case study of poultry farming.
    Dupas MC; Parison S; Noel V; Chatzimpiros P; Herbert É
    PLoS One; 2023; 18(10):e0286242. PubMed ID: 37782652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions.
    Hittinger E; Azevedo IML
    Environ Sci Technol; 2017 Nov; 51(21):12988-12997. PubMed ID: 29016129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.