These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 29329836)
1. Fermented Apulian table olives: Effect of selected microbial starters on polyphenols composition, antioxidant activities and bioaccessibility. D'Antuono I; Bruno A; Linsalata V; Minervini F; Garbetta A; Tufariello M; Mita G; Logrieco AF; Bleve G; Cardinali A Food Chem; 2018 May; 248():137-145. PubMed ID: 29329836 [TBL] [Abstract][Full Text] [Related]
2. Biophenols from Table Olive cv Bella di Cerignola: Chemical Characterization, Bioaccessibility, and Intestinal Absorption. D'Antuono I; Garbetta A; Ciasca B; Linsalata V; Minervini F; Lattanzio VM; Logrieco AF; Cardinali A J Agric Food Chem; 2016 Jul; 64(28):5671-8. PubMed ID: 27355793 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of bioactive compounds in black table olives fermented with selected microbial starters. Durante M; Tufariello M; Tommasi L; Lenucci MS; Bleve G; Mita G J Sci Food Agric; 2018 Jan; 98(1):96-103. PubMed ID: 28543537 [TBL] [Abstract][Full Text] [Related]
4. Effects of olive leaf extract addition on fermentative and oxidative processes of table olives and their nutritional properties. Caponio F; Difonzo G; Calasso M; Cosmai L; De Angelis M Food Res Int; 2019 Feb; 116():1306-1317. PubMed ID: 30716920 [TBL] [Abstract][Full Text] [Related]
5. Effect of cultivar and processing method on the contents of polyphenols in table olives. Romero C; Brenes M; Yousfi K; García P; García A; Garrido A J Agric Food Chem; 2004 Feb; 52(3):479-84. PubMed ID: 14759136 [TBL] [Abstract][Full Text] [Related]
6. Table olive polyphenols: A simultaneous determination by liquid chromatography-mass spectrometry. Moreno-González R; Juan ME; Planas JM J Chromatogr A; 2020 Jan; 1609():460434. PubMed ID: 31416621 [TBL] [Abstract][Full Text] [Related]
7. Study of the effects of pasteurization and selected microbial starters on functional traits of fermented table olives. Tarantini A; Crupi P; Ramires FA; D'Amico L; Romano G; Blando F; Branco P; Clodoveo ML; Corbo F; Cardinali A; Bleve G Food Microbiol; 2024 Sep; 122():104537. PubMed ID: 38839217 [TBL] [Abstract][Full Text] [Related]
8. Fermentation of table olives by oleuropeinolytic starter culture in reduced salt brines and inactivation of Escherichia coli O157:H7 and Listeria monocytogenes. Tataridou M; Kotzekidou P Int J Food Microbiol; 2015 Sep; 208():122-30. PubMed ID: 26065729 [TBL] [Abstract][Full Text] [Related]
9. Microbiological and chemical profiles of naturally fermented table olives and brines from different Italian cultivars. Tofalo R; Schirone M; Perpetuini G; Angelozzi G; Suzzi G; Corsetti A Antonie Van Leeuwenhoek; 2012 Jun; 102(1):121-31. PubMed ID: 22430765 [TBL] [Abstract][Full Text] [Related]
10. A New Culture Medium Rich in Phenols Used for Screening Bitter Degrading Strains of Lactic Acid Bacteria to Employ in Table Olive Production. Lanza B; Bacceli M; Di Marco S; Simone N; Di Loreto G; Flamminii F; Mollica A; Cichelli A Molecules; 2024 May; 29(10):. PubMed ID: 38792098 [TBL] [Abstract][Full Text] [Related]
11. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. De Angelis M; Campanella D; Cosmai L; Summo C; Rizzello CG; Caponio F Food Microbiol; 2015 Dec; 52():18-30. PubMed ID: 26338113 [TBL] [Abstract][Full Text] [Related]
13. Polyphenol changes during fermentation of naturally black olives. Romero C; Brenes M; García P; García A; Garrido A J Agric Food Chem; 2004 Apr; 52(7):1973-9. PubMed ID: 15053538 [TBL] [Abstract][Full Text] [Related]
14. Differences in the Neuroprotective Effect of Orally Administered Virgin Olive Oil (Olea europaea) Polyphenols Tyrosol and Hydroxytyrosol in Rats. De La Cruz JP; Ruiz-Moreno MI; Guerrero A; Reyes JJ; Benitez-Guerrero A; Espartero JL; González-Correa JA J Agric Food Chem; 2015 Jul; 63(25):5957-63. PubMed ID: 26066316 [TBL] [Abstract][Full Text] [Related]
15. Effect of Salt Addition and Fermentation Time on Phenolics, Microbial Dynamics, Volatile Organic Compounds, and Sensory Properties of the PDO Table Olives of Gaeta (Italy). Sacchi R; Corrado G; Basile B; Mandarello D; Ambrosino ML; Paduano A; Savarese M; Caporaso N; Aponte M; Genovese A Molecules; 2022 Nov; 27(22):. PubMed ID: 36432200 [TBL] [Abstract][Full Text] [Related]
16. β-Cyclodextrin Does not Alter the Bioaccessibility and the Uptake by Caco-2 Cells of Olive By-Product Phenolic Compounds. Malapert A; Tomao V; Margier M; Nowicki M; Gleize B; Dangles O; Reboul E Nutrients; 2018 Nov; 10(11):. PubMed ID: 30400310 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of oleuropeinolytic strains of Lactobacillus plantarum group and influence on phenolic compounds in table olives elaborated under reduced salt conditions. Kaltsa A; Papaliaga D; Papaioannou E; Kotzekidou P Food Microbiol; 2015 Jun; 48():58-62. PubMed ID: 25790992 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of yeast starters to drive and improve Picual, Manzanilla and Kalamàta table olive fermentation. Tufariello M; Anglana C; Crupi P; Virtuosi I; Fiume P; Di Terlizzi B; Moselhy N; Attay HA; Pati S; Logrieco AF; Mita G; Bleve G J Sci Food Agric; 2019 Mar; 99(5):2504-2512. PubMed ID: 30379330 [TBL] [Abstract][Full Text] [Related]
20. Physico-chemical characterization of natural fermentation process of Conservolea and Kalamàta table olives and developement of a protocol for the pre-selection of fermentation starters. Bleve G; Tufariello M; Durante M; Grieco F; Ramires FA; Mita G; Tasioula-Margari M; Logrieco AF Food Microbiol; 2015 Apr; 46():368-382. PubMed ID: 25475307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]