These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29330024)

  • 1. Nucleophosmin-1 regions associated with acute myeloid leukemia interact differently with lipid membranes.
    De Santis A; La Manna S; Krauss IR; Malfitano AM; Novellino E; Federici L; De Cola A; Di Matteo A; D'Errico G; Marasco D
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):967-978. PubMed ID: 29330024
    [No Abstract]   [Full Text] [Related]  

  • 2. Interaction of Hsp90 with phospholipid model membranes.
    Zhang M; Wang D; Li P; Sun C; Xu R; Geng Z; Xu W; Dai Z
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):611-616. PubMed ID: 29166573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid membranes supported on optically transparent nanosilicas: synthesis and application in characterization of protein-membrane interactions.
    Fadeev AY; DeGrado WF
    J Colloid Interface Sci; 2011 Mar; 355(1):265-8. PubMed ID: 21193202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the bilayer composition on the binding and membrane disrupting effect of Polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity.
    dos Santos Cabrera MP; Arcisio-Miranda M; Gorjão R; Leite NB; de Souza BM; Curi R; Procopio J; Ruggiero Neto J; Palma MS
    Biochemistry; 2012 Jun; 51(24):4898-908. PubMed ID: 22630563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of membranotropic sequences from herpes simplex virus type I glycoproteins B and H in the fusion process.
    Galdiero S; Falanga A; Vitiello G; Vitiello M; Pedone C; D'Errico G; Galdiero M
    Biochim Biophys Acta; 2010 Mar; 1798(3):579-91. PubMed ID: 20085747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioadhesive giant vesicles for monitoring hydroperoxidation in lipid membranes.
    Aoki PH; Schroder AP; Constantino CJ; Marques CM
    Soft Matter; 2015 Aug; 11(30):5995-8. PubMed ID: 26067909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutual structural effect of bilirubin and model membranes by vibrational circular dichroism.
    Novotná P; Goncharova I; Urbanová M
    Biochim Biophys Acta; 2014 Mar; 1838(3):831-41. PubMed ID: 24355499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of the C-terminal sterile alpha motif (SAM) domain of human p73 to lipid membranes.
    Barrera FN; Poveda JA; González-Ros JM; Neira JL
    J Biol Chem; 2003 Nov; 278(47):46878-85. PubMed ID: 12954612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol Modifies Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes.
    Gao X; Campbell WA; Chaibva M; Jain P; Leslie AE; Frey SL; Legleiter J
    Biochemistry; 2016 Jan; 55(1):92-102. PubMed ID: 26652744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grape tannin catechin and ethanol fluidify oral membrane mimics containing moderate amounts of cholesterol: Implications on wine tasting?
    Furlan AL; Saad A; Dufourc EJ; Géan J
    Biochimie; 2016 Nov; 130():41-48. PubMed ID: 27402289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycolipid transfer protein: clear structure and activity, but enigmatic function.
    Neumann S; Opacić M; Wechselberger RW; Sprong H; Egmond MR
    Adv Enzyme Regul; 2008; 48():137-51. PubMed ID: 18167316
    [No Abstract]   [Full Text] [Related]  

  • 12. Uptake of sevoflurane limited by the presence of cholesterol in the lipid bilayer membrane: a multinuclear nuclear magnetic resonance study.
    Okamura E; Takechi Y; Aki K
    J Oleo Sci; 2014; 63(11):1149-57. PubMed ID: 25296575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance for measuring interactions of proteins with lipid membranes.
    Hodnik V; Anderluh G
    Methods Mol Biol; 2013; 974():23-36. PubMed ID: 23404270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes.
    Bozelli JC; Sasahara ET; Pinto MR; Nakaie CR; Schreier S
    Chem Phys Lipids; 2012 May; 165(4):365-73. PubMed ID: 22209923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane interactions of cell-penetrating peptides probed by tryptophan fluorescence and dichroism techniques: correlations of structure to cellular uptake.
    Caesar CE; Esbjörner EK; Lincoln P; Nordén B
    Biochemistry; 2006 Jun; 45(24):7682-92. PubMed ID: 16768464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence correlation spectroscopy to examine protein-lipid interactions in membranes.
    Betaneli V; Schwille P
    Methods Mol Biol; 2013; 974():253-78. PubMed ID: 23404280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The membrane-induced structure of melittin is correlated with the fluidity of the lipids.
    Andersson A; Biverståhl H; Nordin J; Danielsson J; Lindahl E; Mäler L
    Biochim Biophys Acta; 2007 Jan; 1768(1):115-21. PubMed ID: 16949029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the Alzheimer Aβ(25-35) peptide segment with model membranes.
    Cuco A; Serro AP; Farinha JP; Saramago B; da Silva AG
    Colloids Surf B Biointerfaces; 2016 May; 141():10-18. PubMed ID: 26816349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of topology, length, and charge on the activity of a kininogen-derived peptide on lipid membranes and bacteria.
    Ringstad L; Kacprzyk L; Schmidtchen A; Malmsten M
    Biochim Biophys Acta; 2007 Mar; 1768(3):715-27. PubMed ID: 17207456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of trichorzianines A and B with model membranes and with the amoeba Dictyostelium.
    el Hajji M; Rebuffat S; Le Doan T; Klein G; Satre M; Bodo B
    Biochim Biophys Acta; 1989 Jan; 978(1):97-104. PubMed ID: 2914134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.