BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 29330358)

  • 21. The HGF/Met/NF-κB Pathway Regulates RANKL Expression in Osteoblasts and Bone Marrow Stromal Cells.
    Tsubaki M; Seki S; Takeda T; Chihara A; Arai Y; Morii Y; Imano M; Satou T; Shimomura K; Nishida S
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tumor-host cell interactions in the bone disease of myeloma.
    Fowler JA; Edwards CM; Croucher PI
    Bone; 2011 Jan; 48(1):121-8. PubMed ID: 20615487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation.
    Groen RW; de Rooij MF; Kocemba KA; Reijmers RM; de Haan-Kramer A; Overdijk MB; Aalders L; Rozemuller H; Martens AC; Bergsagel PL; Kersten MJ; Pals ST; Spaargaren M
    Haematologica; 2011 Nov; 96(11):1653-61. PubMed ID: 21828122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myeloma bone disease.
    Sezer O
    Hematology; 2005; 10 Suppl 1():19-24. PubMed ID: 16188625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Why do myeloma patients have bone disease? A historical perspective.
    Børset M; Sundan A; Waage A; Standal T
    Blood Rev; 2020 May; 41():100646. PubMed ID: 31810754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathogenesis of myeloma bone disease.
    Roodman GD
    Blood Cells Mol Dis; 2004; 32(2):290-2. PubMed ID: 15003820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteoblastogenesis and tumor growth in myeloma.
    Yaccoby S
    Leuk Lymphoma; 2010 Feb; 51(2):213-20. PubMed ID: 20038269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of the bone marrow microenvironment in multiple myeloma.
    Roodman GD
    J Bone Miner Res; 2002 Nov; 17(11):1921-5. PubMed ID: 12412796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple myeloma-derived MMP-13 mediates osteoclast fusogenesis and osteolytic disease.
    Fu J; Li S; Feng R; Ma H; Sabeh F; Roodman GD; Wang J; Robinson S; Guo XE; Lund T; Normolle D; Mapara MY; Weiss SJ; Lentzsch S
    J Clin Invest; 2016 May; 126(5):1759-72. PubMed ID: 27043283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in multiple myeloma: only up-regulation of Wnt inhibitors SFRP3 and DKK1 is associated with lytic bone disease.
    Kristensen IB; Christensen JH; Lyng MB; Møller MB; Pedersen L; Rasmussen LM; Ditzel HJ; Abildgaard N
    Leuk Lymphoma; 2014 Apr; 55(4):911-9. PubMed ID: 23915193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New insights in myeloma-induced osteolysis.
    Barillé-Nion S; Bataille R
    Leuk Lymphoma; 2003 Sep; 44(9):1463-7. PubMed ID: 14565645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: a possible role for HGF in myeloma-associated osteolytic bone disease.
    Hjertner O; Torgersen ML; Seidel C; Hjorth-Hansen H; Waage A; Børset M; Sundan A
    Blood; 1999 Dec; 94(11):3883-8. PubMed ID: 10572104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of osteoblast suppression in multiple myeloma.
    Stewart JP; Shaughnessy JD
    J Cell Biochem; 2006 May; 98(1):1-13. PubMed ID: 16440324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myeloma and Bone Disease.
    Panaroni C; Yee AJ; Raje NS
    Curr Osteoporos Rep; 2017 Oct; 15(5):483-498. PubMed ID: 28861842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective inhibition of matrix metalloproteinase-2 in the multiple myeloma-bone microenvironment.
    Shay G; Tauro M; Loiodice F; Tortorella P; Sullivan DM; Hazlehurst LA; Lynch CC
    Oncotarget; 2017 Jun; 8(26):41827-41840. PubMed ID: 28611279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blockade of XCL1/Lymphotactin Ameliorates Severity of Periprosthetic Osteolysis Triggered by Polyethylene-Particles.
    Tian Y; Terkawi MA; Onodera T; Alhasan H; Matsumae G; Takahashi D; Hamasaki M; Ebata T; Aly MK; Kida H; Shimizu T; Uetsuki K; Kadoya K; Iwasaki N
    Front Immunol; 2020; 11():1720. PubMed ID: 32849609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells.
    Andersen TL; Søe K; Sondergaard TE; Plesner T; Delaisse JM
    Br J Haematol; 2010 Feb; 148(4):551-61. PubMed ID: 19919653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Myeloma bone disease and RANKL signaling].
    Abe M
    Clin Calcium; 2011 Aug; 21(8):1167-74. PubMed ID: 21814021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel role for CCL3 (MIP-1α) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function.
    Vallet S; Pozzi S; Patel K; Vaghela N; Fulciniti MT; Veiby P; Hideshima T; Santo L; Cirstea D; Scadden DT; Anderson KC; Raje N
    Leukemia; 2011 Jul; 25(7):1174-81. PubMed ID: 21403648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene silencing of the BDNF/TrkB axis in multiple myeloma blocks bone destruction and tumor burden in vitro and in vivo.
    Ai LS; Sun CY; Wang YD; Zhang L; Chu ZB; Qin Y; Gao F; Yan H; Guo T; Chen L; Yang D; Hu Y
    Int J Cancer; 2013 Sep; 133(5):1074-84. PubMed ID: 23420490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.