These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29330363)

  • 1. Disulfide isomerization reactions in titin immunoglobulin domains enable a mode of protein elasticity.
    Giganti D; Yan K; Badilla CL; Fernandez JM; Alegre-Cebollada J
    Nat Commun; 2018 Jan; 9(1):185. PubMed ID: 29330363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titin (visco-) elasticity in skeletal muscle myofibrils.
    Herzog JA; Leonard TR; Jinha A; Herzog W
    Mol Cell Biomech; 2014 Mar; 11(1):1-17. PubMed ID: 25330621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains.
    Yuan G; Le S; Yao M; Qian H; Zhou X; Yan J; Chen H
    Angew Chem Int Ed Engl; 2017 May; 56(20):5490-5493. PubMed ID: 28394039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal oxidation of conserved cysteines modulates cardiac titin stiffness and dynamics.
    Herrero-Galán E; Martínez-Martín I; Sánchez-González C; Vicente N; Bonzón-Kulichenko E; Calvo E; Suay-Corredera C; Pricolo MR; Fernández-Trasancos Á; Velázquez-Carreras D; Careaga CB; Abdellatif M; Sedej S; Rainer PP; Giganti D; Pérez-Jiménez R; Vázquez J; Alegre-Cebollada J
    Redox Biol; 2022 Jun; 52():102306. PubMed ID: 35367810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence.
    Grützner A; Garcia-Manyes S; Kötter S; Badilla CL; Fernandez JM; Linke WA
    Biophys J; 2009 Aug; 97(3):825-34. PubMed ID: 19651040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computing Average Passive Forces in Sarcomeres in Length-Ramp Simulations.
    Schappacher-Tilp G; Leonard T; Desch G; Herzog W
    PLoS Comput Biol; 2016 Jun; 12(6):e1004904. PubMed ID: 27276390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics.
    Granzier H; Helmes M; Trombitás K
    Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding.
    Trombitás K; Wu Y; McNabb M; Greaser M; Kellermayer MS; Labeit S; Granzier H
    Biophys J; 2003 Nov; 85(5):3142-53. PubMed ID: 14581214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mechanical Power of Titin Folding.
    Eckels EC; Haldar S; Tapia-Rojo R; Rivas-Pardo JA; Fernández JM
    Cell Rep; 2019 May; 27(6):1836-1847.e4. PubMed ID: 31067467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils.
    Minajeva A; Kulke M; Fernandez JM; Linke WA
    Biophys J; 2001 Mar; 80(3):1442-51. PubMed ID: 11222304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Work Done by Titin Protein Folding Assists Muscle Contraction.
    Rivas-Pardo JA; Eckels EC; Popa I; Kosuri P; Linke WA; Fernández JM
    Cell Rep; 2016 Feb; 14(6):1339-1347. PubMed ID: 26854230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin.
    Tong B; Tian F; Zheng P
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding.
    Alegre-Cebollada J; Kosuri P; Giganti D; Eckels E; Rivas-Pardo JA; Hamdani N; Warren CM; Solaro RJ; Linke WA; Fernández JM
    Cell; 2014 Mar; 156(6):1235-1246. PubMed ID: 24630725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin.
    Mayans O; Wuerges J; Canela S; Gautel M; Wilmanns M
    Structure; 2001 Apr; 9(4):331-40. PubMed ID: 11525170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments.
    Trombitás K; Greaser M; Labeit S; Jin JP; Kellermayer M; Helmes M; Granzier H
    J Cell Biol; 1998 Feb; 140(4):853-9. PubMed ID: 9472037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced unfolding modulated by disulfide bonds in the Ig domains of a cell adhesion molecule.
    Carl P; Kwok CH; Manderson G; Speicher DW; Discher DE
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1565-70. PubMed ID: 11171991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force generation by titin folding.
    Mártonfalvi Z; Bianco P; Naftz K; Ferenczy GG; Kellermayer M
    Protein Sci; 2017 Jul; 26(7):1380-1390. PubMed ID: 28097712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series.
    Gautel M; Goulding D
    FEBS Lett; 1996 Apr; 385(1-2):11-4. PubMed ID: 8641453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of disulfide bonds on the mechanical stability of proteins is context dependent.
    Manteca A; Alonso-Caballero Á; Fertin M; Poly S; De Sancho D; Perez-Jimenez R
    J Biol Chem; 2017 Aug; 292(32):13374-13380. PubMed ID: 28642368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deleting titin's I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function.
    Granzier HL; Hutchinson KR; Tonino P; Methawasin M; Li FW; Slater RE; Bull MM; Saripalli C; Pappas CT; Gregorio CC; Smith JE
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14589-94. PubMed ID: 25246556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.