BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29330371)

  • 21. On the early emergence of reverse transcription: theoretical basis and experimental evidence.
    Lazcano A; Valverde V; Hernández G; Gariglio P; Fox GE; Oró J
    J Mol Evol; 1992 Dec; 35(6):524-36. PubMed ID: 1282161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retroviral reverse transcriptases.
    Herschhorn A; Hizi A
    Cell Mol Life Sci; 2010 Aug; 67(16):2717-47. PubMed ID: 20358252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Major groove binding track residues of the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase enhance cDNA synthesis at high temperatures.
    Matamoros T; Barrioluengo V; Abia D; Menéndez-Arias L
    Biochemistry; 2013 Dec; 52(51):9318-28. PubMed ID: 24303887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relative rates of retroviral reverse transcriptase template switching during RNA- and DNA-dependent DNA synthesis.
    Bowman RR; Hu WS; Pathak VK
    J Virol; 1998 Jun; 72(6):5198-206. PubMed ID: 9573292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A possible role for cysteine residues in the fidelity of DNA synthesis exhibited by the reverse transcriptases of human immunodeficiency viruses type 1 and type 2.
    Bakhanashvili M; Hizi A
    FEBS Lett; 1992 Jun; 304(2-3):289-93. PubMed ID: 1377646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Substrate variations that affect the nucleic acid clamp activity of reverse transcriptases.
    Oz-Gleenberg I; Herzig E; Voronin N; Hizi A
    FEBS J; 2012 May; 279(10):1894-903. PubMed ID: 22443410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus.
    Avidan O; Meer ME; Oz I; Hizi A
    Eur J Biochem; 2002 Feb; 269(3):859-67. PubMed ID: 11846787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of an in vivo assay to identify structural determinants in murine leukemia virus reverse transcriptase important for fidelity.
    Halvas EK; Svarovskaia ES; Pathak VK
    J Virol; 2000 Jan; 74(1):312-9. PubMed ID: 10590119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanistic differences in RNA-dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases.
    Skasko M; Weiss KK; Reynolds HM; Jamburuthugoda V; Lee K; Kim B
    J Biol Chem; 2005 Apr; 280(13):12190-200. PubMed ID: 15644314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fidelity of misinsertion and mispair extension throughout DNA synthesis exhibited by mutants of the reverse transcriptase of human immunodeficiency virus type 2 resistant to nucleoside analogs.
    Taube R; Avidan O; Hizi A
    Eur J Biochem; 1997 Nov; 250(1):106-14. PubMed ID: 9431997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA-dependent DNA polymerases.
    Tzertzinis G; Tabor S; Nichols NM
    Curr Protoc Mol Biol; 2008 Oct; Chapter 3():Unit3.7. PubMed ID: 18972389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fidelity of the reverse transcriptase of human immunodeficiency virus type 2.
    Bakhanashvili M; Hizi A
    FEBS Lett; 1992 Jul; 306(2-3):151-6. PubMed ID: 1378791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of phenylalanine-119 of the reverse transcriptase of mouse mammary tumour virus in DNA synthesis, ribose selection and drug resistance.
    Entin-Meer M; Sevilya Z; Hizi A
    Biochem J; 2002 Oct; 367(Pt 2):381-91. PubMed ID: 12097136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased thermostability and fidelity of DNA synthesis of wild-type and mutant HIV-1 group O reverse transcriptases.
    Alvarez M; Matamoros T; Menéndez-Arias L
    J Mol Biol; 2009 Oct; 392(4):872-84. PubMed ID: 19651140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fidelity of classwide-resistant HIV-2 reverse transcriptase and differential contribution of K65R to the accuracy of HIV-1 and HIV-2 reverse transcriptases.
    Álvarez M; Sebastián-Martín A; García-Marquina G; Menéndez-Arias L
    Sci Rep; 2017 Mar; 7():44834. PubMed ID: 28333133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescent Tricyclic Cytidine Analogues as Substrates for Retroviral Reverse Transcriptases.
    Turner MB; Purse BW
    Chempluschem; 2020 May; 85(5):855-865. PubMed ID: 32378814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reverse transcriptase encoded by the non-LTR retrotransposon R2 is as error-prone as that encoded by HIV-1.
    Jamburuthugoda VK; Eickbush TH
    J Mol Biol; 2011 Apr; 407(5):661-72. PubMed ID: 21320510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translesion synthesis by AMV, HIV, and MMLVreverse transcriptases using RNA templates containing inosine, guanosine, and their 8-oxo-7,8-dihydropurine derivatives.
    Glennon MM; Skinner A; Krutsinger M; Resendiz MJE
    PLoS One; 2020; 15(8):e0235102. PubMed ID: 32857764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reverse transcriptases and genomic variability: the accuracy of DNA replication is enzyme specific and sequence dependent.
    Ricchetti M; Buc H
    EMBO J; 1990 May; 9(5):1583-93. PubMed ID: 1691709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of DNA polymerase activities between recombinant feline immunodeficiency and leukemia virus reverse transcriptases.
    Operario DJ; Reynolds HM; Kim B
    Virology; 2005 Apr; 335(1):106-21. PubMed ID: 15823610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.