These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 29330377)
1. Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells. Alshawaf AJ; Viventi S; Qiu W; D'Abaco G; Nayagam B; Erlichster M; Chana G; Everall I; Ivanusic J; Skafidas E; Dottori M Sci Rep; 2018 Jan; 8(1):603. PubMed ID: 29330377 [TBL] [Abstract][Full Text] [Related]
2. Enriched population of PNS neurons derived from human embryonic stem cells as a platform for studying peripheral neuropathies. Valensi-Kurtz M; Lefler S; Cohen MA; Aharonowiz M; Cohen-Kupiec R; Sheinin A; Ashery U; Reubinoff B; Weil M PLoS One; 2010 Feb; 5(2):e9290. PubMed ID: 20174633 [TBL] [Abstract][Full Text] [Related]
3. Adult mouse sensory neurons on microelectrode arrays exhibit increased spontaneous and stimulus-evoked activity in the presence of interleukin-6. Black BJ; Atmaramani R; Kumaraju R; Plagens S; Romero-Ortega M; Dussor G; Price TJ; Campbell ZT; Pancrazio JJ J Neurophysiol; 2018 Sep; 120(3):1374-1385. PubMed ID: 29947589 [TBL] [Abstract][Full Text] [Related]
4. Modelling the dorsal root ganglia using human pluripotent stem cells: A platform to study peripheral neuropathies. Viventi S; Dottori M Int J Biochem Cell Biol; 2018 Jul; 100():61-68. PubMed ID: 29772357 [TBL] [Abstract][Full Text] [Related]
5. Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent Stem Cells. Gupta S; Sivalingam D; Hain S; Makkar C; Sosa E; Clark A; Butler SJ Stem Cell Reports; 2018 Feb; 10(2):390-405. PubMed ID: 29337120 [TBL] [Abstract][Full Text] [Related]
6. In vivo survival and differentiation of Friedreich ataxia iPSC-derived sensory neurons transplanted in the adult dorsal root ganglia. Viventi S; Frausin S; Howden SE; Lim SY; Finol-Urdaneta RK; McArthur JR; Abu-Bonsrah KD; Ng W; Ivanusic J; Thompson L; Dottori M Stem Cells Transl Med; 2021 Aug; 10(8):1157-1169. PubMed ID: 33734599 [TBL] [Abstract][Full Text] [Related]
7. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro. Heikkilä TJ; Ylä-Outinen L; Tanskanen JM; Lappalainen RS; Skottman H; Suuronen R; Mikkonen JE; Hyttinen JA; Narkilahti S Exp Neurol; 2009 Jul; 218(1):109-16. PubMed ID: 19393237 [TBL] [Abstract][Full Text] [Related]
8. Robust induction of neural crest cells to derive peripheral sensory neurons from human induced pluripotent stem cells. Umehara Y; Toyama S; Tominaga M; Matsuda H; Takahashi N; Kamata Y; Niyonsaba F; Ogawa H; Takamori K Sci Rep; 2020 Mar; 10(1):4360. PubMed ID: 32152328 [TBL] [Abstract][Full Text] [Related]
9. Generation of neural crest cells and peripheral sensory neurons from human embryonic stem cells. Goldstein RS; Pomp O; Brokhman I; Ziegler L Methods Mol Biol; 2010; 584():283-300. PubMed ID: 19907983 [TBL] [Abstract][Full Text] [Related]
10. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1. Guo X; Spradling S; Stancescu M; Lambert S; Hickman JJ Biomaterials; 2013 Jun; 34(18):4418-27. PubMed ID: 23498896 [TBL] [Abstract][Full Text] [Related]
11. Directed Differentiation of Human Embryonic Stem Cells to Neural Crest Stem Cells, Functional Peripheral Neurons, and Corneal Keratocytes. Zhu Q; Li M; Yan C; Lu Q; Wei S; Gao R; Yu M; Zou Y; Sriram G; Tong HJ; Hunziker W; Seneviratne CJ; Gong Z; Olsen BR; Cao T Biotechnol J; 2017 Dec; 12(12):. PubMed ID: 28762648 [TBL] [Abstract][Full Text] [Related]
12. Generation of Corneal Keratocytes from Human Embryonic Stem Cells. Hertsenberg AJ; Funderburgh JL Methods Mol Biol; 2016; 1341():285-94. PubMed ID: 26026882 [TBL] [Abstract][Full Text] [Related]
13. Culture of dissociated sensory neurons from dorsal root ganglia of postnatal and adult rats. Owen DE; Egerton J Methods Mol Biol; 2012; 846():179-87. PubMed ID: 22367811 [TBL] [Abstract][Full Text] [Related]
14. The Specification and Maturation of Nociceptive Neurons from Human Embryonic Stem Cells. Boisvert EM; Engle SJ; Hallowell SE; Liu P; Wang ZW; Li XJ Sci Rep; 2015 Nov; 5():16821. PubMed ID: 26581770 [TBL] [Abstract][Full Text] [Related]
15. Quox 1 homeobox protein is expressed in postmitotic sensory neurons of dorsal root ganglia. Xue Z; Ziller C; Xue XJ Brain Res Dev Brain Res; 1998 Jan; 105(1):59-66. PubMed ID: 9497080 [TBL] [Abstract][Full Text] [Related]
16. Derivation of Peripheral Nociceptive, Mechanoreceptive, and Proprioceptive Sensory Neurons from the same Culture of Human Pluripotent Stem Cells. Saito-Diaz K; Street JR; Ulrichs H; Zeltner N Stem Cell Reports; 2021 Mar; 16(3):446-457. PubMed ID: 33545066 [TBL] [Abstract][Full Text] [Related]
17. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Nickolls AR; Lee MM; Espinoza DF; Szczot M; Lam RM; Wang Q; Beers J; Zou J; Nguyen MQ; Solinski HJ; AlJanahi AA; Johnson KR; Ward ME; Chesler AT; Bönnemann CG Cell Rep; 2020 Jan; 30(3):932-946.e7. PubMed ID: 31968264 [TBL] [Abstract][Full Text] [Related]
18. The formation of the superior and jugular ganglia: insights into the generation of sensory neurons by the neural crest. Thompson H; Blentic A; Watson S; Begbie J; Graham A Dev Dyn; 2010 Feb; 239(2):439-45. PubMed ID: 20014097 [TBL] [Abstract][Full Text] [Related]
19. Electrophysiological investigation of human embryonic stem cell derived neurospheres using a novel spike detection algorithm. Mayer M; Arrizabalaga O; Lieb F; Ciba M; Ritter S; Thielemann C Biosens Bioelectron; 2018 Feb; 100():462-468. PubMed ID: 28963963 [TBL] [Abstract][Full Text] [Related]
20. Development and validation of an in vitro model system to study peripheral sensory neuron development and injury. Jones I; Yelhekar TD; Wiberg R; Kingham PJ; Johansson S; Wiberg M; Carlsson L Sci Rep; 2018 Oct; 8(1):15961. PubMed ID: 30374154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]