These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29330416)

  • 1. Virtual Genome Walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence.
    Evans T; Johnson AD; Loose M
    Sci Rep; 2018 Jan; 8(1):618. PubMed ID: 29330416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chromosome-scale assembly of the axolotl genome.
    Smith JJ; Timoshevskaya N; Timoshevskiy VA; Keinath MC; Hardy D; Voss SR
    Genome Res; 2019 Feb; 29(2):317-324. PubMed ID: 30679309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of immunoglobulin
    Martinez-Barnetche J; Godoy-Lozano EE; Saint Remy-Hernández S; Pacheco-Olvera DL; Téllez-Sosa J; Valdovinos-Torres H; Pastelin-Palacios R; Mena H; Zambrano L; López-Macías C
    Front Immunol; 2023; 14():1039274. PubMed ID: 36776846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sal-Site: research resources for the Mexican axolotl.
    Baddar NW; Woodcock MR; Khatri S; Kump DK; Voss SR
    Methods Mol Biol; 2015; 1290():321-36. PubMed ID: 25740497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genic regions of a large salamander genome contain long introns and novel genes.
    Smith JJ; Putta S; Zhu W; Pao GM; Verma IM; Hunter T; Bryant SV; Gardiner DM; Harkins TT; Voss SR
    BMC Genomics; 2009 Jan; 10():19. PubMed ID: 19144141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing.
    Keinath MC; Timoshevskiy VA; Timoshevskaya NY; Tsonis PA; Voss SR; Smith JJ
    Sci Rep; 2015 Nov; 5():16413. PubMed ID: 26553646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale variation in single nucleotide polymorphism density within the laboratory axolotl (Ambystoma mexicanum).
    Timoshevskaya N; Voss SR; Labianca CN; High CR; Smith JJ
    Dev Dyn; 2021 Jun; 250(6):822-837. PubMed ID: 33001517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The axolotl genome and the evolution of key tissue formation regulators.
    Nowoshilow S; Schloissnig S; Fei JF; Dahl A; Pang AWC; Pippel M; Winkler S; Hastie AR; Young G; Roscito JG; Falcon F; Knapp D; Powell S; Cruz A; Cao H; Habermann B; Hiller M; Tanaka EM; Myers EW
    Nature; 2018 Feb; 554(7690):50-55. PubMed ID: 29364872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of axolotl oropharyngeal explants during taste bud differentiation stages.
    Kohli P; Marazzi L; Eastman D
    Mech Dev; 2020 Mar; 161():103597. PubMed ID: 32044293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration.
    Wu CH; Tsai MH; Ho CC; Chen CY; Lee HS
    BMC Genomics; 2013 Jul; 14():434. PubMed ID: 23815514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patching Holes in the Chlamydomonas Genome.
    Tulin F; Cross FR
    G3 (Bethesda); 2016 Jul; 6(7):1899-910. PubMed ID: 27175017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introducing www.axolotl-omics.org - an integrated -omics data portal for the axolotl research community.
    Nowoshilow S; Tanaka EM
    Exp Cell Res; 2020 Sep; 394(1):112143. PubMed ID: 32540400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative Meta-Assembly Pipeline (IMAP): Chromosome-level genome assembler combining multiple de novo assemblies.
    Song G; Lee J; Kim J; Kang S; Lee H; Kwon D; Lee D; Lang GI; Cherry JM; Kim J
    PLoS One; 2019; 14(8):e0221858. PubMed ID: 31454399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal 16S rRNA data derived from limb regenerative tissue samples of axolotl Ambystoma mexicanum.
    Demircan T; İlhan AE; Ovezmyradov G; Öztürk G; Yıldırım S
    Sci Data; 2019 May; 6(1):70. PubMed ID: 31123261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracembler--software for in-silico chromosome walking in unassembled genomes.
    Dong Q; Wilkerson MD; Brendel V
    BMC Bioinformatics; 2007 May; 8():151. PubMed ID: 17490482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative performance of transcriptome assembly methods for non-model organisms.
    Huang X; Chen XG; Armbruster PA
    BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of axolotl lampbrush chromosomes by fluorescence in situ hybridization and immunostaining.
    Keinath MC; Davidian A; Timoshevskiy V; Timoshevskaya N; Gall JG
    Exp Cell Res; 2021 Apr; 401(2):112523. PubMed ID: 33675804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The giant axolotl genome uncovers the evolution, scaling, and transcriptional control of complex gene loci.
    Schloissnig S; Kawaguchi A; Nowoshilow S; Falcon F; Otsuki L; Tardivo P; Timoshevskaya N; Keinath MC; Smith JJ; Voss SR; Tanaka EM
    Proc Natl Acad Sci U S A; 2021 Apr; 118(15):. PubMed ID: 33827918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of reference genes and validation for gene expression studies in diverse axolotl (Ambystoma mexicanum) tissues.
    Guelke E; Bucan V; Liebsch C; Lazaridis A; Radtke C; Vogt PM; Reimers K
    Gene; 2015 Apr; 560(1):114-23. PubMed ID: 25637570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CESAR 2.0 substantially improves speed and accuracy of comparative gene annotation.
    Sharma V; Schwede P; Hiller M
    Bioinformatics; 2017 Dec; 33(24):3985-3987. PubMed ID: 28961744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.