BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29330491)

  • 1. Application of Hydrazine-Embedded Heterocyclic Compounds to High Voltage Rechargeable Lithium Organic Batteries.
    Shimizu T; Yamamoto K; Pandit P; Yoshikawa H; Higashibayashi S
    Sci Rep; 2018 Jan; 8(1):579. PubMed ID: 29330491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries.
    Wu M; Cui Y; Bhargav A; Losovyj Y; Siegel A; Agarwal M; Ma Y; Fu Y
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):10027-31. PubMed ID: 27411083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries.
    Zhao C; Chen Z; Wang W; Xiong P; Li B; Li M; Yang J; Xu Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11992-11998. PubMed ID: 32266770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthraquinone-Based Oligomer as a Long Cycle-Life Organic Electrode Material for Use in Rechargeable Batteries.
    Yao M; Sano H; Ando H; Kiyobayashi T; Takeichi N
    Chemphyschem; 2019 Apr; 20(7):967-971. PubMed ID: 30775839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-Active Macrocycles for Organic Rechargeable Batteries.
    Kim DJ; Hermann KR; Prokofjevs A; Otley MT; Pezzato C; Owczarek M; Stoddart JF
    J Am Chem Soc; 2017 May; 139(19):6635-6643. PubMed ID: 28437104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries.
    Shin JY; Yamada T; Yoshikawa H; Awaga K; Shinokubo H
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3096-101. PubMed ID: 24554515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bis(aryl) Tetrasulfides as Cathode Materials for Rechargeable Lithium Batteries.
    Guo W; Wawrzyniakowski ZD; Cerda MM; Bhargav A; Pluth MD; Ma Y; Fu Y
    Chemistry; 2017 Dec; 23(67):16941-16947. PubMed ID: 28861926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge Storage Mechanism and Structural Evolution of Viologen Crystals as the Cathode of Lithium Batteries.
    Ma T; Liu L; Wang J; Lu Y; Chen J
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11533-11539. PubMed ID: 32297392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triphenylamine-Based Metal-Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability.
    Peng Z; Yi X; Liu Z; Shang J; Wang D
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14578-85. PubMed ID: 27225327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilution of the Electron Density in the π-Conjugated Skeleton of Organic Cathode Materials Improves the Discharge Voltage.
    Dai G; Gao Y; Niu Z; He P; Zhang X; Zhao Y; Zhou H
    ChemSusChem; 2020 May; 13(9):2264-2270. PubMed ID: 31953904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-voltage positive electrode materials for lithium-ion batteries.
    Li W; Song B; Manthiram A
    Chem Soc Rev; 2017 May; 46(10):3006-3059. PubMed ID: 28440379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypercrosslinked phenothiazine-based polymers as high redox potential organic cathode materials for lithium-ion batteries.
    Zhang Y; Gao P; Guo X; Chen H; Zhang R; Du Y; Wang B; Yang H
    RSC Adv; 2020 Apr; 10(28):16732-16736. PubMed ID: 35498833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries.
    Wang S; Wang Q; Shao P; Han Y; Gao X; Ma L; Yuan S; Ma X; Zhou J; Feng X; Wang B
    J Am Chem Soc; 2017 Mar; 139(12):4258-4261. PubMed ID: 28316238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Engineering of Perylene Imides for High-Performance Lithium Batteries: Diels-Alder Extension and Chiral Dimerization.
    Li L; Hong YJ; Chen DY; Lin MJ
    Chemistry; 2017 Nov; 23(65):16612-16620. PubMed ID: 28967155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery.
    Ma T; Zhao Q; Wang J; Pan Z; Chen J
    Angew Chem Int Ed Engl; 2016 May; 55(22):6428-32. PubMed ID: 27080745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.
    Fang X; Peng H
    Small; 2015 Apr; 11(13):1488-511. PubMed ID: 25510342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.