BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29330928)

  • 1. Specific labelling of myonuclei by an antibody against pericentriolar material 1 on skeletal muscle tissue sections.
    Winje IM; Bengtsen M; Eftestøl E; Juvkam I; Bruusgaard JC; Gundersen K
    Acta Physiol (Oxf); 2018 Aug; 223(4):e13034. PubMed ID: 29330928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PCM1 labeling reveals myonuclear and nuclear dynamics in skeletal muscle across species.
    Viggars MR; Owens DJ; Stewart C; Coirault C; Mackey AL; Jarvis JC
    Am J Physiol Cell Physiol; 2023 Jan; 324(1):C85-C97. PubMed ID: 36409178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the epigenetic landscape in myonuclei purified with a PCM1 antibody from a fast/glycolytic and a slow/oxidative muscle.
    Bengtsen M; Winje IM; Eftestøl E; Landskron J; Sun C; Nygård K; Domanska D; Millay DP; Meza-Zepeda LA; Gundersen K
    PLoS Genet; 2021 Nov; 17(11):e1009907. PubMed ID: 34752468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of MyoD, myogenin and cell cycle regulatory factors in hypertrophying rat skeletal muscles.
    Ishido M; Kami K; Masuhara M
    Acta Physiol Scand; 2004 Mar; 180(3):281-9. PubMed ID: 14962010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exclusive vital labeling of myonuclei for studying myonuclear arrangement in mouse skeletal muscle tissue.
    Hastings RL; Massopust RT; Haddix SG; Lee YI; Thompson WJ
    Skelet Muscle; 2020 May; 10(1):15. PubMed ID: 32381068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.
    Egner IM; Bruusgaard JC; Gundersen K
    Development; 2016 Aug; 143(16):2898-906. PubMed ID: 27531949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cellular mechanism of muscle memory facilitates mitochondrial remodelling following resistance training.
    Lee H; Kim K; Kim B; Shin J; Rajan S; Wu J; Chen X; Brown MD; Lee S; Park JY
    J Physiol; 2018 Sep; 596(18):4413-4426. PubMed ID: 30099751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new technique for the quantitative assessment of 8-oxoguanine in nuclear DNA as a marker of oxidative stress. Application to dystrophin-deficient DMD skeletal muscles.
    Nakae Y; Stoward PJ; Bespalov IA; Melamede RJ; Wallace SS
    Histochem Cell Biol; 2005 Sep; 124(3-4):335-45. PubMed ID: 16091938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative morphometric study of the skeletal muscles of normal and streptozotocin-diabetic rats.
    Aughsteen AA; Khair AM; Suleiman AA
    JOP; 2006 Jul; 7(4):382-9. PubMed ID: 16832135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apoptosis of myofibres and satellite cells: exercise-induced damage in skeletal muscle of the mouse.
    Podhorska-Okolow M; Sandri M; Zampieri S; Brun B; Rossini K; Carraro U
    Neuropathol Appl Neurobiol; 1998 Dec; 24(6):518-31. PubMed ID: 9888162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy.
    Alway SE; Pereira SL; Edens NK; Hao Y; Bennett BT
    Exp Gerontol; 2013 Sep; 48(9):973-84. PubMed ID: 23832076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerative capacity and the number of satellite cells in soleus muscles of normal and mdx mice.
    Reimann J; Irintchev A; Wernig A
    Neuromuscul Disord; 2000 Jun; 10(4-5):276-82. PubMed ID: 10838255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitations of nls beta-galactosidase as a marker for studying myogenic lineage or the efficacy of myoblast transfer.
    Yang J; Ontell MP; Kelly R; Watkins SC; Ontell M
    Anat Rec; 1997 May; 248(1):40-50. PubMed ID: 9143666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The expression patterns of Pax7 in satellite cells during overload-induced rat adult skeletal muscle hypertrophy.
    Ishido M; Uda M; Kasuga N; Masuhara M
    Acta Physiol (Oxf); 2009 Apr; 195(4):459-69. PubMed ID: 18808442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical isolation of myonuclei employed to define changes to the myonuclear proteome that occur with aging.
    Cutler AA; Dammer EB; Doung DM; Seyfried NT; Corbett AH; Pavlath GK
    Aging Cell; 2017 Aug; 16(4):738-749. PubMed ID: 28544616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myonucleus-related properties in soleus muscle fibers of mdx mice.
    Terada M; Lan YB; Kawano F; Ohira T; Higo Y; Nakai N; Imaizumi K; Ogura A; Nishimoto N; Adachi Y; Ohira Y
    Cells Tissues Organs; 2010; 191(3):248-59. PubMed ID: 19776548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle memory and a new cellular model for muscle atrophy and hypertrophy.
    Gundersen K
    J Exp Biol; 2016 Jan; 219(Pt 2):235-42. PubMed ID: 26792335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The timing between skeletal muscle myoblast replication and fusion into myotubes, and the stability of regenerated dystrophic myofibres: an autoradiographic study in mdx mice.
    McGeachie JK; Grounds MD
    J Anat; 1999 Feb; 194 ( Pt 2)(Pt 2):287-95. PubMed ID: 10337961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study.
    Snow MH
    Anat Rec; 1977 Jun; 188(2):201-17. PubMed ID: 869238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apoptosis in capillary endothelial cells in ageing skeletal muscle.
    Wang H; Listrat A; Meunier B; Gueugneau M; Coudy-Gandilhon C; Combaret L; Taillandier D; Polge C; Attaix D; Lethias C; Lee K; Goh KL; Béchet D
    Aging Cell; 2014 Apr; 13(2):254-62. PubMed ID: 24245531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.