These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
443 related articles for article (PubMed ID: 29331053)
1. REnal Flow and Microstructure AnisotroPy (REFMAP) MRI in Normal and Peritumoral Renal Tissue. Liu AL; Mikheev A; Rusinek H; Huang WC; Wysock JS; Babb JS; Feiweier T; Stoffel D; Chandarana H; Sigmund EE J Magn Reson Imaging; 2018 Jul; 48(1):188-197. PubMed ID: 29331053 [TBL] [Abstract][Full Text] [Related]
2. Cardiac Phase and Flow Compensation Effects on REnal Flow and Microstructure AnisotroPy MRI in Healthy Human Kidney. Sigmund EE; Mikheev A; Brinkmann IM; Gilani N; Babb JS; Basukala D; Benkert T; Veraart J; Chandarana H J Magn Reson Imaging; 2023 Jul; 58(1):210-220. PubMed ID: 36399101 [TBL] [Abstract][Full Text] [Related]
3. Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging. Mao W; Zhou J; Zeng M; Ding Y; Qu L; Chen C; Ding X; Wang Y; Fu C J Magn Reson Imaging; 2018 May; 47(5):1251-1259. PubMed ID: 28940646 [TBL] [Abstract][Full Text] [Related]
4. Initial experience of generalized intravoxel incoherent motion imaging and diffusion tensor imaging (GIVIM-DTI) in healthy subjects. Ye Q; Chen Z; Zhao Y; Zhang Z; Miao H; Xiao Q; Wang M; Li J J Magn Reson Imaging; 2016 Sep; 44(3):732-8. PubMed ID: 27079733 [TBL] [Abstract][Full Text] [Related]
5. Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy. Notohamiprodjo M; Chandarana H; Mikheev A; Rusinek H; Grinstead J; Feiweier T; Raya JG; Lee VS; Sigmund EE Magn Reson Med; 2015 Apr; 73(4):1526-32. PubMed ID: 24752998 [TBL] [Abstract][Full Text] [Related]
6. Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney. Gilani N; Mikheev A; Brinkmann IM; Kumbella M; Babb JS; Basukala D; Wetscherek A; Benkert T; Chandarana H; Sigmund EE MAGMA; 2024 Aug; 37(4):671-680. PubMed ID: 38703246 [TBL] [Abstract][Full Text] [Related]
7. Assessment of renal function using intravoxel incoherent motion diffusion-weighted imaging and dynamic contrast-enhanced MRI. Bane O; Wagner M; Zhang JL; Dyvorne HA; Orton M; Rusinek H; Taouli B J Magn Reson Imaging; 2016 Aug; 44(2):317-26. PubMed ID: 26855407 [TBL] [Abstract][Full Text] [Related]
8. In vivo evaluation of human patellar tendon microstructure and microcirculation with diffusion MRI. Wengler K; Fukuda T; Tank D; Komatsu DE; Paulus M; Huang M; Gould ES; Schweitzer ME; He X J Magn Reson Imaging; 2020 Mar; 51(3):780-790. PubMed ID: 31407413 [TBL] [Abstract][Full Text] [Related]
9. Intravoxel incoherent motion diffusion-weighted imaging of hepatocellular carcinoma: Is there a correlation with flow and perfusion metrics obtained with dynamic contrast-enhanced MRI? Hectors SJ; Wagner M; Besa C; Bane O; Dyvorne HA; Fiel MI; Zhu H; Donovan M; Taouli B J Magn Reson Imaging; 2016 Oct; 44(4):856-64. PubMed ID: 26919327 [TBL] [Abstract][Full Text] [Related]
10. Retrospective Distortion and Motion Correction for Free-Breathing DW-MRI of the Kidneys Using Dual-Echo EPI and Slice-to-Volume Registration. Coll-Font J; Afacan O; Hoge S; Garg H; Shashi K; Marami B; Gholipour A; Chow J; Warfield S; Kurugol S J Magn Reson Imaging; 2021 May; 53(5):1432-1443. PubMed ID: 33382173 [TBL] [Abstract][Full Text] [Related]
11. Intravoxel incoherent motion diffusion-weighted MRI of invasive breast cancer: Correlation with prognostic factors and kinetic features acquired with computer-aided diagnosis. Song SE; Cho KR; Seo BK; Woo OH; Park KH; Son YH; Grimm R J Magn Reson Imaging; 2019 Jan; 49(1):118-130. PubMed ID: 30238533 [TBL] [Abstract][Full Text] [Related]
12. Intravoxel incoherent motion modeling in the kidneys: Comparison of mono-, bi-, and triexponential fit. van Baalen S; Leemans A; Dik P; Lilien MR; Ten Haken B; Froeling M J Magn Reson Imaging; 2017 Jul; 46(1):228-239. PubMed ID: 27787931 [TBL] [Abstract][Full Text] [Related]
13. Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Sigmund EE; Vivier PH; Sui D; Lamparello NA; Tantillo K; Mikheev A; Rusinek H; Babb JS; Storey P; Lee VS; Chandarana H Radiology; 2012 Jun; 263(3):758-69. PubMed ID: 22523327 [TBL] [Abstract][Full Text] [Related]
14. An intravoxel oriented flow model for diffusion-weighted imaging of the kidney. Hilbert F; Bock M; Neubauer H; Veldhoen S; Wech T; Bley TA; Köstler H NMR Biomed; 2016 Oct; 29(10):1403-13. PubMed ID: 27488570 [TBL] [Abstract][Full Text] [Related]
15. Intravoxel incoherent motion diffusion-weighted MRI of the abdomen: The effect of fitting algorithms on the accuracy and reliability of the parameters. Park HJ; Sung YS; Lee SS; Lee Y; Cheong H; Kim YJ; Lee MG J Magn Reson Imaging; 2017 Jun; 45(6):1637-1647. PubMed ID: 27865032 [TBL] [Abstract][Full Text] [Related]
16. Measurement and scan reproducibility of parameters of intravoxel incoherent motion in renal tumor and normal renal parenchyma: a preliminary research at 3.0 T MR. Pan J; Zhang H; Man F; Shen Y; Wang Y; Zhong Y; Ma L; Wang H; Ye H Abdom Radiol (NY); 2018 Jul; 43(7):1739-1748. PubMed ID: 29071436 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions. Cakir O; Arslan A; Inan N; Anık Y; Sarısoy T; Gumustas S; Akansel G Eur J Radiol; 2013 Dec; 82(12):e801-6. PubMed ID: 24099642 [TBL] [Abstract][Full Text] [Related]
19. [Assessment of renal function with intravoxel incoherent motion and diffusion tensor imaging in type 2 diabetic patients]. Chen SN; Wang YC; Feng YL; Gao YT; Ju SS Zhonghua Yi Xue Za Zhi; 2018 Jan; 98(5):346-351. PubMed ID: 29429244 [No Abstract] [Full Text] [Related]