These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 29331062)
1. Benefits of increasing transpiration efficiency in wheat under elevated CO Christy B; Tausz-Posch S; Tausz M; Richards R; Rebetzke G; Condon A; McLean T; Fitzgerald G; Bourgault M; O'Leary G Glob Chang Biol; 2018 May; 24(5):1965-1977. PubMed ID: 29331062 [TBL] [Abstract][Full Text] [Related]
2. Global change impacts on wheat production along an environmental gradient in south Australia. Reyenga PJ; Howden SM; Meinke H; Hall WB Environ Int; 2001 Sep; 27(2-3):195-200. PubMed ID: 11697669 [TBL] [Abstract][Full Text] [Related]
3. A reduced-tillering trait shows small but important yield gains in dryland wheat production. Houshmandfar A; Ota N; O'Leary GJ; Zheng B; Chen Y; Tausz-Posch S; Fitzgerald GJ; Richards R; Rebetzke GJ; Tausz M Glob Chang Biol; 2020 Jul; 26(7):4056-4067. PubMed ID: 32237246 [TBL] [Abstract][Full Text] [Related]
4. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study. Tausz-Posch S; Norton RM; Seneweera S; Fitzgerald GJ; Tausz M Physiol Plant; 2013 Jun; 148(2):232-45. PubMed ID: 23035842 [TBL] [Abstract][Full Text] [Related]
5. The shifting influence of drought and heat stress for crops in northeast Australia. Lobell DB; Hammer GL; Chenu K; Zheng B; McLean G; Chapman SC Glob Chang Biol; 2015 Nov; 21(11):4115-27. PubMed ID: 26152643 [TBL] [Abstract][Full Text] [Related]
6. Elevated atmospheric [CO2 ] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves. Fitzgerald GJ; Tausz M; O'Leary G; Mollah MR; Tausz-Posch S; Seneweera S; Mock I; Löw M; Partington DL; McNeil D; Norton RM Glob Chang Biol; 2016 Jun; 22(6):2269-84. PubMed ID: 26929390 [TBL] [Abstract][Full Text] [Related]
7. The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO Houshmandfar A; Fitzgerald GJ; O'Leary G; Tausz-Posch S; Fletcher A; Tausz M Physiol Plant; 2018 Aug; 163(4):516-529. PubMed ID: 29205382 [TBL] [Abstract][Full Text] [Related]
8. Australian wheat production expected to decrease by the late 21st century. Wang B; Liu L; O'Leary GJ; Asseng S; Macadam I; Lines-Kelly R; Yang X; Clark A; Crean J; Sides T; Xing H; Mi C; Yu Q Glob Chang Biol; 2018 Jun; 24(6):2403-2415. PubMed ID: 29284201 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil. Battisti R; Sentelhas PC; Boote KJ Int J Biometeorol; 2018 May; 62(5):823-832. PubMed ID: 29196806 [TBL] [Abstract][Full Text] [Related]
10. Climate change impact and adaptation for wheat protein. Asseng S; Martre P; Maiorano A; Rötter RP; O'Leary GJ; Fitzgerald GJ; Girousse C; Motzo R; Giunta F; Babar MA; Reynolds MP; Kheir AMS; Thorburn PJ; Waha K; Ruane AC; Aggarwal PK; Ahmed M; Balkovič J; Basso B; Biernath C; Bindi M; Cammarano D; Challinor AJ; De Sanctis G; Dumont B; Eyshi Rezaei E; Fereres E; Ferrise R; Garcia-Vila M; Gayler S; Gao Y; Horan H; Hoogenboom G; Izaurralde RC; Jabloun M; Jones CD; Kassie BT; Kersebaum KC; Klein C; Koehler AK; Liu B; Minoli S; Montesino San Martin M; Müller C; Naresh Kumar S; Nendel C; Olesen JE; Palosuo T; Porter JR; Priesack E; Ripoche D; Semenov MA; Stöckle C; Stratonovitch P; Streck T; Supit I; Tao F; Van der Velde M; Wallach D; Wang E; Webber H; Wolf J; Xiao L; Zhang Z; Zhao Z; Zhu Y; Ewert F Glob Chang Biol; 2019 Jan; 25(1):155-173. PubMed ID: 30549200 [TBL] [Abstract][Full Text] [Related]
11. [Evaluating the response of yield and evapotranspiration of winter wheat and the adaptation by adjusting crop variety to climate change in Huang-Huai-Hai Plain]. Hu S; Mo XG; Lin ZH Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):1153-61. PubMed ID: 26259458 [TBL] [Abstract][Full Text] [Related]
12. Spatial analysis of the impact of climate change factors and adaptation strategies on productivity of wheat in Ethiopia. Araya A; Prasad PVV; Zambreski Z; Gowda PH; Ciampitti IA; Assefa Y; Girma A Sci Total Environ; 2020 Aug; 731():139094. PubMed ID: 32417478 [TBL] [Abstract][Full Text] [Related]
13. Of growing importance: combining greater early vigour and transpiration efficiency for wheat in variable rainfed environments. Wilson PB; Rebetzke GJ; Condon AG Funct Plant Biol; 2015 Dec; 42(12):1107-1115. PubMed ID: 32480749 [TBL] [Abstract][Full Text] [Related]
14. The implication of irrigation in climate change impact assessment: a European-wide study. Zhao G; Webber H; Hoffmann H; Wolf J; Siebert S; Ewert F Glob Chang Biol; 2015 Nov; 21(11):4031-48. PubMed ID: 26227557 [TBL] [Abstract][Full Text] [Related]
15. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency. Xue GP; McIntyre CL; Chapman S; Bower NI; Way H; Reverter A; Clarke B; Shorter R Plant Mol Biol; 2006 Aug; 61(6):863-81. PubMed ID: 16927201 [TBL] [Abstract][Full Text] [Related]
16. Climate trends account for stalled wheat yields in Australia since 1990. Hochman Z; Gobbett DL; Horan H Glob Chang Biol; 2017 May; 23(5):2071-2081. PubMed ID: 28117534 [TBL] [Abstract][Full Text] [Related]
17. Impacts of climate change and climate variability on the competitiveness of wheat and beef cattle production in Emerald, north-east Australia. Howden SM; McKeon GM; Meinke H; Entel M; Flood N Environ Int; 2001 Sep; 27(2-3):155-60. PubMed ID: 11697663 [TBL] [Abstract][Full Text] [Related]
18. Modelling impact of early vigour on wheat yield in dryland regions. Zhao Z; Rebetzke GJ; Zheng B; Chapman SC; Wang E J Exp Bot; 2019 Apr; 70(9):2535-2548. PubMed ID: 30918963 [TBL] [Abstract][Full Text] [Related]
19. Adaptation to climate change through strategic integration of long fallow into cropping system in a dryland Mediterranean-type environment. Chen C; Ota N; Wang B; Fu G; Fletcher A Sci Total Environ; 2023 Jul; 880():163230. PubMed ID: 37023813 [TBL] [Abstract][Full Text] [Related]
20. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature. Wallin G; Hall M; Slaney M; Räntfors M; Medhurst J; Linder S Tree Physiol; 2013 Nov; 33(11):1177-91. PubMed ID: 24169104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]