These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29331108)

  • 1. Classical molecular dynamics simulation of microwave heating of liquids: The case of water.
    Afify ND; Sweatman MB
    J Chem Phys; 2018 Jan; 148(2):024508. PubMed ID: 29331108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of microwave heating of liquid monoethanolamine (MEA): An evaluation of existing force fields.
    Afify ND; Sweatman MB
    J Chem Phys; 2018 May; 148(20):204513. PubMed ID: 29865830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Langevin behavior of the dielectric decrement in ionic liquid water mixtures.
    Heid E; Docampo-Álvarez B; Varela LM; Prosenz K; Steinhauser O; Schröder C
    Phys Chem Chem Phys; 2018 Jun; 20(22):15106-15117. PubMed ID: 29808190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.
    Fuentes-Azcatl R; Alejandre J
    J Phys Chem B; 2014 Feb; 118(5):1263-72. PubMed ID: 24422512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric constant and density of aqueous alkali halide solutions by molecular dynamics: A force field assessment.
    Saric D; Kohns M; Vrabec J
    J Chem Phys; 2020 Apr; 152(16):164502. PubMed ID: 32357782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics Investigation of the Influence of the Hydrogen Bond Networks in Ethanol/Water Mixtures on Dielectric Spectra.
    Cardona J; Sweatman MB; Lue L
    J Phys Chem B; 2018 Feb; 122(4):1505-1515. PubMed ID: 29300476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Moisture, Temperature, and Salt Content on the Dielectric Properties of Pecan Kernels During Microwave and Radio Frequency Drying Processes.
    Zhang J; Li M; Cheng J; Wang J; Ding Z; Yuan X; Zhou S; Liu X
    Foods; 2019 Sep; 8(9):. PubMed ID: 31480741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of Dielectric Permittivity from Atomistic Molecular Dynamics Simulations and Microwave Measurements.
    Saad-Falcon A; Zhang Z; Ryoo D; Dee J; Westafer RS; Gumbart JC
    J Phys Chem B; 2022 Oct; 126(40):8021-8029. PubMed ID: 36171073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature and Moisture Dependent Dielectric and Thermal Properties of Walnut Components Associated with Radio Frequency and Microwave Pasteurization.
    Mao Y; Hao Y; Guan X; Wang P; Wang S
    Foods; 2022 Mar; 11(7):. PubMed ID: 35407005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic-radiation absorption by water.
    Lunkenheimer P; Emmert S; Gulich R; Köhler M; Wolf M; Schwab M; Loidl A
    Phys Rev E; 2017 Dec; 96(6-1):062607. PubMed ID: 29347319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Mechanisms Contributing to the Growth and Physiology of an Extremophile Cultured with Dielectric Heating.
    Cusick KD; Lin B; Malanoski AP; Strycharz-Glaven SM; Cockrell-Zugell A; Fitzgerald LA; Cramer JA; Barlow DE; Boyd TJ; Biffinger JC
    Appl Environ Microbiol; 2016 Oct; 82(20):6233-6246. PubMed ID: 27520819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization.
    Li R; Zhang S; Kou X; Ling B; Wang S
    Sci Rep; 2017 Feb; 7():42452. PubMed ID: 28186149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of microwave heating on the characteristics of polyelectrolytes.
    Martin D; Mateescu E; Ighigeanu D; Jianu A
    J Microw Power Electromagn Energy; 2000; 35(4):216-24. PubMed ID: 11257823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple corrections for the static dielectric constant of liquid mixtures from model force fields.
    Cardona J; Jorge M; Lue L
    Phys Chem Chem Phys; 2020 Oct; 22(38):21741-21749. PubMed ID: 32959821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding physical mechanism of low-level microwave radiation effect.
    Hinrikus H; Bachmann M; Lass J
    Int J Radiat Biol; 2018 Oct; 94(10):877-882. PubMed ID: 29775391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions.
    De Luca S; Todd BD; Hansen JS; Daivis PJ
    Langmuir; 2014 Mar; 30(11):3095-109. PubMed ID: 24575940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A survey of the dielectric properties of meats and ingredients used in meat product manufacture.
    Lyng JG; Zhang L; Brunton NP
    Meat Sci; 2005 Apr; 69(4):589-602. PubMed ID: 22063136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave dielectric spectra and molecular relaxation in formamide-N,N-dimethylformamide binary mixtures.
    Sengwa RJ; Choudhary S; Khatri V
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):279-82. PubMed ID: 21831698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refining classical force fields for ionic liquids: theory and application to [MMIM][Cl].
    Dommert F; Holm C
    Phys Chem Chem Phys; 2013 Feb; 15(6):2037-49. PubMed ID: 23262645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.