These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 29331232)

  • 1. Incorporating behavioral and sensory context into spectro-temporal models of auditory encoding.
    David SV
    Hear Res; 2018 Mar; 360():107-123. PubMed ID: 29331232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capturing contextual effects in spectro-temporal receptive fields.
    Westö J; May PJ
    Hear Res; 2016 Sep; 339():195-210. PubMed ID: 27473504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context dependence of spectro-temporal receptive fields with implications for neural coding.
    Eggermont JJ
    Hear Res; 2011 Jan; 271(1-2):123-32. PubMed ID: 20123121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of spectro-temporal tuning over several seconds in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Neuroscience; 2007 Sep; 148(3):806-14. PubMed ID: 17693032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained firing of model central auditory neurons yields a discriminative spectro-temporal representation for natural sounds.
    Carlin MA; Elhilali M
    PLoS Comput Biol; 2013; 9(3):e1002982. PubMed ID: 23555217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.
    Qiu A; Schreiner CE; Escabí MA
    J Neurophysiol; 2003 Jul; 90(1):456-76. PubMed ID: 12660353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli.
    David SV; Mesgarani N; Fritz JB; Shamma SA
    J Neurosci; 2009 Mar; 29(11):3374-86. PubMed ID: 19295144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Essential Complexity of Auditory Receptive Fields.
    Thorson IL; Liénard J; David SV
    PLoS Comput Biol; 2015 Dec; 11(12):e1004628. PubMed ID: 26683490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral tuning of adaptation supports coding of sensory context in auditory cortex.
    Lopez Espejo M; Schwartz ZP; David SV
    PLoS Comput Biol; 2019 Oct; 15(10):e1007430. PubMed ID: 31626624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding auditory spectro-temporal receptive fields and their changes with input statistics by efficient coding principles.
    Zhao L; Zhaoping L
    PLoS Comput Biol; 2011 Aug; 7(8):e1002123. PubMed ID: 21887121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics.
    Homma NY; Atencio CA; Schreiner CE
    Neuroscience; 2021 Jul; 467():150-170. PubMed ID: 33951506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex.
    Laudanski J; Edeline JM; Huetz C
    PLoS One; 2012; 7(11):e50539. PubMed ID: 23209771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Idealized computational models for auditory receptive fields.
    Lindeberg T; Friberg A
    PLoS One; 2015; 10(3):e0119032. PubMed ID: 25822973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organizing principles of spectro-temporal encoding in the avian primary auditory area field L.
    Nagel KI; Doupe AJ
    Neuron; 2008 Jun; 58(6):938-55. PubMed ID: 18579083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementary Effects of Adaptation and Gain Control on Sound Encoding in Primary Auditory Cortex.
    Pennington JR; David SV
    eNeuro; 2020; 7(6):. PubMed ID: 33109632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for the analysis of auditory processing in the brain.
    Theunissen FE; Woolley SM; Hsu A; Fremouw T
    Ann N Y Acad Sci; 2004 Jun; 1016():187-207. PubMed ID: 15313776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation of spectrotemporal sound information in the ascending auditory pathway.
    Escabí MA; Read HL
    Biol Cybern; 2003 Nov; 89(5):350-62. PubMed ID: 14669015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matching Pursuit Analysis of Auditory Receptive Fields' Spectro-Temporal Properties.
    Bach JH; Kollmeier B; Anemüller J
    Front Syst Neurosci; 2017; 11():4. PubMed ID: 28232791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurophysiology goes wild: from exploring sensory coding in sound proof rooms to natural environments.
    Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 May; 207(3):303-319. PubMed ID: 33835199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain.
    Woolley SM; Gill PR; Theunissen FE
    J Neurosci; 2006 Mar; 26(9):2499-512. PubMed ID: 16510728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.