These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 29331233)

  • 1. A biophysical modelling platform of the cochlear nucleus and other auditory circuits: From channels to networks.
    Manis PB; Campagnola L
    Hear Res; 2018 Mar; 360():76-91. PubMed ID: 29331233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of ion conductances to the onset responses of octopus cells in the ventral cochlear nucleus: simulation results.
    Cai Y; McGee J; Walsh EJ
    J Neurophysiol; 2000 Jan; 83(1):301-14. PubMed ID: 10634873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons.
    Bahmer A; Langner G
    Biol Cybern; 2009 Jan; 100(1):21-33. PubMed ID: 19015873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biophysical model for modulation frequency encoding in the cochlear nucleus.
    Eguia MC; Garcia GC; Romano SA
    J Physiol Paris; 2010; 104(3-4):118-27. PubMed ID: 19944156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm.
    Bahmer A; Langner G
    Biol Cybern; 2006 Oct; 95(4):371-9. PubMed ID: 16847666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of onset responses in octopus cells of the cochlear nucleus: implications of a model.
    Cai Y; Walsh EJ; McGee J
    J Neurophysiol; 1997 Aug; 78(2):872-83. PubMed ID: 9307120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss.
    Shore SE; Koehler S; Oldakowski M; Hughes LF; Syed S
    Eur J Neurosci; 2008 Jan; 27(1):155-68. PubMed ID: 18184319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons.
    McGinley MJ; Liberman MC; Bal R; Oertel D
    J Neurosci; 2012 Jul; 32(27):9301-11. PubMed ID: 22764237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.
    Lerud KD; Almonte FV; Kim JC; Large EW
    Hear Res; 2014 Feb; 308():41-9. PubMed ID: 24091182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical stimulation of the cochlear nerve in rats: analysis of c-Fos expression in auditory brainstem nuclei.
    Nakamura M; Rosahl SK; Alkahlout E; Walter GF; Samii MM
    Brain Res; 2005 Jan; 1031(1):39-55. PubMed ID: 15621011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal response properties of neurons in the auditory pathway.
    Carney LH
    Curr Opin Neurobiol; 1999 Aug; 9(4):442-6. PubMed ID: 10448160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the dynamics of responses to amplitude modulated stimuli by modeling inhibitory interneurons in cochlear nucleus.
    Dugué P; Le Bouquin Jeannès R; Faucon G
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1286-9. PubMed ID: 18002198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functional point-neuron model simulating cochlear nucleus ideal onset responses.
    Dicke U; Dau T
    J Comput Neurosci; 2005 Oct; 19(2):239-53. PubMed ID: 16133821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Onset neurones in the anteroventral cochlear nucleus project to the dorsal cochlear nucleus.
    Arnott RH; Wallace MN; Shackleton TM; Palmer AR
    J Assoc Res Otolaryngol; 2004 Jun; 5(2):153-70. PubMed ID: 15357418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input.
    Xie R; Manis PB
    Front Neural Circuits; 2017; 11():77. PubMed ID: 29093666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type.
    Schaette R; Kempter R
    Hear Res; 2008 Jun; 240(1-2):57-72. PubMed ID: 18396381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Computational Account of the Role of Cochlear Nucleus and Inferior Colliculus in Stabilizing Auditory Nerve Firing for Auditory Category Learning.
    Higgins I; Stringer S; Schnupp J
    Neural Comput; 2018 Jul; 30(7):1801-1829. PubMed ID: 29652586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contralateral inhibitory and excitatory frequency response maps in the mammalian cochlear nucleus.
    Ingham NJ; Bleeck S; Winter IM
    Eur J Neurosci; 2006 Nov; 24(9):2515-29. PubMed ID: 17100840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity influences on neuronal connectivity within the auditory pathway.
    Niparko JK
    Laryngoscope; 1999 Nov; 109(11):1721-30. PubMed ID: 10569397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.