These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
547 related articles for article (PubMed ID: 29331255)
1. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection. M S; Issac A; Dutta MK Int J Med Inform; 2018 Feb; 110():52-70. PubMed ID: 29331255 [TBL] [Abstract][Full Text] [Related]
2. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Mvoulana A; Kachouri R; Akil M Comput Med Imaging Graph; 2019 Oct; 77():101643. PubMed ID: 31541937 [TBL] [Abstract][Full Text] [Related]
3. An adaptive threshold based image processing technique for improved glaucoma detection and classification. Issac A; Partha Sarathi M; Dutta MK Comput Methods Programs Biomed; 2015 Nov; 122(2):229-44. PubMed ID: 26321351 [TBL] [Abstract][Full Text] [Related]
4. Optic cup segmentation from fundus images for glaucoma diagnosis. Hu M; Zhu C; Li X; Xu Y Bioengineered; 2017 Jan; 8(1):21-28. PubMed ID: 27764542 [TBL] [Abstract][Full Text] [Related]
5. Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques. Akram MU; Tariq A; Khalid S; Javed MY; Abbas S; Yasin UU Australas Phys Eng Sci Med; 2015 Dec; 38(4):643-55. PubMed ID: 26399880 [TBL] [Abstract][Full Text] [Related]
6. Optic disc detection and boundary extraction in retinal images. Basit A; Fraz MM Appl Opt; 2015 Apr; 54(11):3440-7. PubMed ID: 25967336 [TBL] [Abstract][Full Text] [Related]
7. Application of vascular bundle displacement in the optic disc for glaucoma detection using fundus images. Fuente-Arriaga JA; Felipe-Riverón EM; Garduño-Calderón E Comput Biol Med; 2014 Apr; 47():27-35. PubMed ID: 24530536 [TBL] [Abstract][Full Text] [Related]
8. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images. Roychowdhury S; Koozekanani DD; Kuchinka SN; Parhi KK IEEE J Biomed Health Inform; 2016 Nov; 20(6):1562-1574. PubMed ID: 26316237 [TBL] [Abstract][Full Text] [Related]
9. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618 [TBL] [Abstract][Full Text] [Related]
10. Improved automated optic cup segmentation based on detection of blood vessel bends in retinal fundus images. Hatanaka Y; Nagahata Y; Muramatsu C; Okumura S; Ogohara K; Sawada A; Ishida K; Yamamoto T; Fujita H Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():126-9. PubMed ID: 25569913 [TBL] [Abstract][Full Text] [Related]
11. An efficient optic cup segmentation method decreasing the influences of blood vessels. Yang C; Lu M; Duan Y; Liu B Biomed Eng Online; 2018 Sep; 17(1):130. PubMed ID: 30257677 [TBL] [Abstract][Full Text] [Related]
12. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques. Akyol K; Şen B; Bayır Ş Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272 [TBL] [Abstract][Full Text] [Related]
13. Segmentation of optic disc and optic cup in retinal fundus images using shape regression. Sedai S; Roy PK; Mahapatra D; Garnavi R Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3260-3264. PubMed ID: 28269003 [TBL] [Abstract][Full Text] [Related]
14. A new robust method for blood vessel segmentation in retinal fundus images based on weighted line detector and hidden Markov model. Zhou C; Zhang X; Chen H Comput Methods Programs Biomed; 2020 Apr; 187():105231. PubMed ID: 31786454 [TBL] [Abstract][Full Text] [Related]
15. Joint optic disc and cup boundary extraction from monocular fundus images. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2017 Aug; 147():51-61. PubMed ID: 28734530 [TBL] [Abstract][Full Text] [Related]
16. Sector-based optic cup segmentation with intensity and blood vessel priors. Yin F; Liu J; Wong DW; Tan NM; Cheng J; Cheng CY; Tham YC; Wong TY Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1454-7. PubMed ID: 23366175 [TBL] [Abstract][Full Text] [Related]
17. Hybrid convolutional neural network optimized with an artificial algae algorithm for glaucoma screening using fundus images. Eswari MS; Balamurali S; Ramasamy LK J Int Med Res; 2024 Sep; 52(9):3000605241271766. PubMed ID: 39301801 [TBL] [Abstract][Full Text] [Related]
18. Sliding window and regression based cup detection in digital fundus images for glaucoma diagnosis. Xu Y; Xu D; Lin S; Liu J; Cheng J; Cheung CY; Aung T; Wong TY Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):1-8. PubMed ID: 22003677 [TBL] [Abstract][Full Text] [Related]
19. Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior. Zhou W; Yi Y; Gao Y; Dai J Comput Math Methods Med; 2019; 2019():8973287. PubMed ID: 31827591 [TBL] [Abstract][Full Text] [Related]
20. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. Cheng J; Liu J; Xu Y; Yin F; Wong DW; Tan NM; Tao D; Cheng CY; Aung T; Wong TY IEEE Trans Med Imaging; 2013 Jun; 32(6):1019-32. PubMed ID: 23434609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]