BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 29331410)

  • 1. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects.
    Raschmanová H; Weninger A; Glieder A; Kovar K; Vogl T
    Biotechnol Adv; 2018; 36(3):641-665. PubMed ID: 29331410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T7 Polymerase Expression of Guide RNAs in vivo Allows Exportable CRISPR-Cas9 Editing in Multiple Yeast Hosts.
    Morse NJ; Wagner JM; Reed KB; Gopal MR; Lauffer LH; Alper HS
    ACS Synth Biol; 2018 Apr; 7(4):1075-1084. PubMed ID: 29565571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.
    Wagner JM; Alper HS
    Fungal Genet Biol; 2016 Apr; 89():126-136. PubMed ID: 26701310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a series of episomal plasmids and their application in the development of an efficient CRISPR/Cas9 system in Pichia pastoris.
    Gu Y; Gao J; Cao M; Dong C; Lian J; Huang L; Cai J; Xu Z
    World J Microbiol Biotechnol; 2019 May; 35(6):79. PubMed ID: 31134410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR Interference and Activation to Modulate Transcription in Yarrowia lipolytica.
    Misa J; Schwartz C
    Methods Mol Biol; 2021; 2307():95-109. PubMed ID: 33847984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica.
    Yang Z; Xu P
    Methods Mol Biol; 2021; 2307():111-121. PubMed ID: 33847985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Tools for Streamlined and Accelerated Pathway Engineering in Yarrowia lipolytica.
    Wong L; Holdridge B; Engel J; Xu P
    Methods Mol Biol; 2019; 1927():155-177. PubMed ID: 30788791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi.
    Vyas VK; Bushkin GG; Bernstein DA; Getz MA; Sewastianik M; Barrasa MI; Bartel DP; Fink GR
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29695624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guide RNA Design for Genome-Wide CRISPR Screens in Yarrowia lipolytica.
    Ramesh A; Wheeldon I
    Methods Mol Biol; 2021; 2307():123-137. PubMed ID: 33847986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Excision by Dual-Guide CRISPR-Cas9.
    Spagnuolo M; Blenner M
    Methods Mol Biol; 2021; 2307():85-94. PubMed ID: 33847983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications.
    Cai P; Gao J; Zhou Y
    Microb Cell Fact; 2019 Apr; 18(1):63. PubMed ID: 30940138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biosynthesis of natural products by non-conventional yeasts].
    Qian Z; Song L; Liu Q; Gong X; Kang Y; He Z; Long H; Cai M
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2284-2312. PubMed ID: 37401595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EasyCloneYALI: CRISPR/Cas9-Based Synthetic Toolbox for Engineering of the Yeast Yarrowia lipolytica.
    Holkenbrink C; Dam MI; Kildegaard KR; Beder J; Dahlin J; Doménech Belda D; Borodina I
    Biotechnol J; 2018 Sep; 13(9):e1700543. PubMed ID: 29377615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A teaching protocol demonstrating the use of EasyClone and CRISPR/Cas9 for metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica.
    Milne N; Tramontin LRR; Borodina I
    FEMS Yeast Res; 2020 Mar; 20(2):. PubMed ID: 31556952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Advances in metabolic engineering of non-conventional yeasts].
    Su L; Zhang G; Yao Z; Liang P; Dai Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2021 May; 37(5):1659-1676. PubMed ID: 34085448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.
    Schwartz C; Wheeldon I
    Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas system for yeast genome engineering: advances and applications.
    Stovicek V; Holkenbrink C; Borodina I
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28505256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guide RNA Engineering Enables Dual Purpose CRISPR-Cpf1 for Simultaneous Gene Editing and Gene Regulation in
    Ramesh A; Ong T; Garcia JA; Adams J; Wheeldon I
    ACS Synth Biol; 2020 Apr; 9(4):967-971. PubMed ID: 32208677
    [No Abstract]   [Full Text] [Related]  

  • 20. A Novel and Efficient Genome Editing Tool Assisted by CRISPR-Cas12a/Cpf1 for
    Zhang X; Gu S; Zheng X; Peng S; Li Y; Lin Y; Liang S
    ACS Synth Biol; 2021 Nov; 10(11):2927-2937. PubMed ID: 34644057
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.