BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 2933150)

  • 1. Maltotriitol inhibition of maltose metabolism in Streptococcus mutans via maltose transport, amylomaltase and phospho-alpha-glucosidase activities.
    Würsch P; Koellreutter B
    Caries Res; 1985; 19(5):439-49. PubMed ID: 2933150
    [No Abstract]   [Full Text] [Related]  

  • 2. [Streptococcus mutans glucosyltransferase inhibition by alpha-glucosidase inhibitors].
    Felgenhauer B; Trautner K
    Dtsch Zahnarztl Z; 1981; 36(12):841-4. PubMed ID: 6459227
    [No Abstract]   [Full Text] [Related]  

  • 3. Engineering of Escherichia coli to facilitate efficient utilization of isomaltose and panose in industrial glucose feedstock.
    Abe K; Kuroda A; Takeshita R
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2057-2066. PubMed ID: 27933453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A radioisotope method for assays of amylomaltase and D-enzyme.
    Medda S; Smith EE
    Anal Biochem; 1984 May; 138(2):354-9. PubMed ID: 6234820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phosphoenolpyruvate-dependent phosphotransferase system is the principal maltose transporter in Streptococcus mutans.
    Webb AJ; Homer KA; Hosie AH
    J Bacteriol; 2007 Apr; 189(8):3322-7. PubMed ID: 17277067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The maltase, glucoamylase and transglucosylase activities of acid -glucosidase from rabbit muscle.
    Palmer TN
    Biochem J; 1971 Oct; 124(4):713-24. PubMed ID: 5289198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncariogenicity of maltitol in specific pathogen-free rats infected with mutans streptococci.
    Ooshima T; Izumitani A; Minami T; Yoshida T; Sobue S; Fujiwara T; Hamada S
    Caries Res; 1992; 26(1):33-7. PubMed ID: 1533175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-soluble glucans from Streptococcus mutans strain Ing-Britt as an energy source for bacterial growth.
    Sund ML; Branting C; Linder LE
    Caries Res; 1989; 23(4):256-60. PubMed ID: 2790860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The maltodextrin system of Escherichia coli: metabolism and transport.
    Dippel R; Boos W
    J Bacteriol; 2005 Dec; 187(24):8322-31. PubMed ID: 16321936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel phosphotransferase system of Streptococcus mutans is responsible for transport of carbohydrates with α-1,3 linkage.
    Ajdic D; Chen Z
    Mol Oral Microbiol; 2013 Apr; 28(2):114-28. PubMed ID: 23193985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays.
    Ajdić D; Pham VT
    J Bacteriol; 2007 Jul; 189(14):5049-59. PubMed ID: 17496079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic preparation of radiolabeled linear maltodextrins and cyclodextrins of high specific activity from [14C] maltose using amylomaltase, cyclodextrin glucosyltransferase and cyclodextrinase.
    Pajatsch M; Böck A; Boos W
    Carbohydr Res; 1998 Feb; 307(3-4):375-9. PubMed ID: 9675373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of group A Streptococcus maltodextrin catabolism and its role in pharyngitis.
    Shelburne SA; Keith DB; Davenport MT; Horstmann N; Brennan RG; Musser JM
    Mol Microbiol; 2008 Jul; 69(2):436-52. PubMed ID: 18485073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of castanospermine on purified lysosomal alpha-1,4-glucosidase.
    Chambers JP; Elbein AD
    Enzyme; 1986; 35(1):53-6. PubMed ID: 3525144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maltitol and maltobionate act differently on maltose- and maltooligosaccharide hydrolysis by human small intestinal glucoamylase-maltase indicating two different enzyme binding modes.
    Günther S; Wehrspaun A; Heymann H
    Arch Biochem Biophys; 1996 Mar; 327(2):295-302. PubMed ID: 8619618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of sugar transport via the multiple sugar metabolism operon of Streptococcus mutans by the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG; Boyd DA; Hamilton IR
    J Bacteriol; 1995 Oct; 177(19):5704-6. PubMed ID: 7559362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of maltose on glucan synthesis by glucosyltransferases of Streptococcus mutans.
    Fukui K; Moriyama T
    Microbiol Immunol; 1983; 27(11):917-27. PubMed ID: 6230510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in five serotypes of Streptococcus mutans.
    Slee AM; Tanzer JM
    Infect Immun; 1979 Nov; 26(2):783-6. PubMed ID: 546796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural elements responsible for the glucosidic linkage-selectivity of a glycoside hydrolase family 13 exo-glucosidase.
    Saburi W; Rachi-Otsuka H; Hondoh H; Okuyama M; Mori H; Kimura A
    FEBS Lett; 2015 Mar; 589(7):865-9. PubMed ID: 25728274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a maltose transport system in Clostridium acetobutylicum ATCC 824.
    Tangney M; Winters GT; Mitchell WJ
    J Ind Microbiol Biotechnol; 2001 Nov; 27(5):298-306. PubMed ID: 11781805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.