BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29331521)

  • 1. Increased transcript levels and kinetic function of pyruvate kinase during severe dehydration in aestivating African clawed frogs, Xenopus laevis.
    Dawson NJ; Biggar Y; Malik AI; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():245-252. PubMed ID: 29331521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of a urea sensitive lactate dehydrogenase from the liver of the African clawed frog, Xenopus laevis.
    Katzenback BA; Dawson NJ; Storey KB
    J Comp Physiol B; 2014 Jul; 184(5):601-11. PubMed ID: 24651940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of a urea sensitive lactate dehydrogenase from skeletal muscle of the African clawed frog, Xenopus laevis.
    Childers CL; Storey KB
    J Comp Physiol B; 2019 Apr; 189(2):271-281. PubMed ID: 30631901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of pyruvate kinase in skeletal muscle of the freeze tolerant wood frog, Rana sylvatica.
    Smolinski MB; Mattice JJL; Storey KB
    Cryobiology; 2017 Aug; 77():25-33. PubMed ID: 28600082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mind the GAP: Purification and characterization of urea resistant GAPDH during extreme dehydration.
    Hadj-Moussa H; Wade SC; Childers CL; Storey KB
    Proteins; 2021 May; 89(5):544-557. PubMed ID: 33368595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-translational Regulation of Hexokinase Function and Protein Stability in the Aestivating Frog Xenopus laevis.
    Childers CL; Storey KB
    Protein J; 2016 Feb; 35(1):61-71. PubMed ID: 26797504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydration mediated microRNA response in the African clawed frog Xenopus laevis.
    Wu CW; Biggar KK; Storey KB
    Gene; 2013 Oct; 529(2):269-75. PubMed ID: 23958654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydration stress alters the mitogen-activated-protein kinase signaling and chaperone stress response in Xenopus laevis.
    Wu CW; Tessier SN; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2020; 246-247():110461. PubMed ID: 32497588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible phosphorylation control of skeletal muscle pyruvate kinase and phosphofructokinase during estivation in the spadefoot toad, Scaphiopus couchii.
    Cowan KJ; Storey KB
    Mol Cell Biochem; 1999 May; 195(1-2):173-81. PubMed ID: 10395081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the insulin-Akt signaling pathway and glycolysis during dehydration stress in the African clawed frog Xenopus laevis.
    Wu CW; Tessier SN; Storey KB
    Biochem Cell Biol; 2017 Dec; 95(6):663-671. PubMed ID: 28708941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of antioxidant enzymes by FoxO1 under dehydration stress.
    Malik AI; Storey KB
    Gene; 2011 Oct; 485(2):114-9. PubMed ID: 21708231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate kinase isozymes in oocytes and embryos from the frog Xenopus laevis.
    Dworkin MB; Segil N; Dworkin-Rastl E
    Comp Biochem Physiol B; 1987; 88(3):743-9. PubMed ID: 3427912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FoxO4 activity is regulated by phosphorylation and the cellular environment during dehydration in the African clawed frog, Xenopus laevis.
    Zhang Y; Luu BE; Storey KB
    Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1721-1728. PubMed ID: 29746959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-induced suppression of pyruvate kinase in liver of the wood frog (Rana sylvatica).
    Varma A; Storey KB
    Adv Biol Regul; 2023 May; 88():100944. PubMed ID: 36542984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulation of Akt and FoxO transcription factors during dehydration in the African clawed frog (Xenopus laevis).
    Luu BE; Zhang Y; Storey KB
    Cell Stress Chaperones; 2020 Nov; 25(6):887-897. PubMed ID: 32451989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation of heat shock proteins in response to dehydration in Xenopus laevis.
    Luu BE; Wijenayake S; Malik AI; Storey KB
    Cell Stress Chaperones; 2018 Jan; 23(1):45-53. PubMed ID: 28676984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of elevated temperature on metabolism during aestivation: implications for muscle disuse atrophy.
    Young KM; Cramp RL; White CR; Franklin CE
    J Exp Biol; 2011 Nov; 214(Pt 22):3782-9. PubMed ID: 22031743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of extracellular signal-regulated kinases during dehydration in the African clawed frog, Xenopus laevis.
    Malik AI; Storey KB
    J Exp Biol; 2009 Aug; 212(Pt 16):2595-603. PubMed ID: 19648404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic depression and Na+/K+ gradients in the aestivating Australian goldfields frog, Neobatrachus wilsmorei.
    Flanigan JE; Withers PC; Fuery CJ; Guppy M
    J Comp Physiol B; 1993; 163(7):587-93. PubMed ID: 8151018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a novel dehydration responsive gene, drp10, from the African clawed frog, Xenopus laevis.
    Biggar KK; Biggar Y; Storey KB
    J Exp Zool A Ecol Genet Physiol; 2015 Jul; 323(6):375-81. PubMed ID: 25866033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.