BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29331780)

  • 1. Application of octanohydroxamic acid for liquid-liquid extraction of manganese oxides and fabrication of supercapacitor electrodes.
    Milne J; Zhitomirsky I
    J Colloid Interface Sci; 2018 Apr; 515():50-57. PubMed ID: 29331780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Octanohydroxamic Acid for Salting out Liquid-Liquid Extraction of Materials for Energy Storage in Supercapacitors.
    Rorabeck K; Zhitomirsky I
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33435538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for liquid-liquid extraction of oxide particles for applications in supercapacitor electrodes and thin films.
    Chen R; Ata MS; Zhao X; Clifford A; Puri I; Zhitomirsky I
    J Colloid Interface Sci; 2017 Aug; 499():1-8. PubMed ID: 28363100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Mn
    Ata MS; Milne J; Zhitomirsky I
    J Colloid Interface Sci; 2018 Feb; 512():758-766. PubMed ID: 29112926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal methods for the fabrication of carbon nanotube-manganese dioxide and carbon nanotube-polypyrrole composites using bile acids.
    Ata MS; Zhitomirsky I
    J Colloid Interface Sci; 2015 Sep; 454():27-34. PubMed ID: 26001135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance.
    Shi K; Zhitomirsky I
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13161-70. PubMed ID: 24255939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal Processing of Mn
    Yang W; Zhitomirsky I
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New developments in liquid-liquid extraction, surface modification and agglomerate-free processing of inorganic particles.
    Silva RME; Poon R; Milne J; Syed A; Zhitomirsky I
    Adv Colloid Interface Sci; 2018 Nov; 261():15-27. PubMed ID: 30293697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic nanotechnology of composite electrodes for electrochemical supercapacitors.
    Su Y; Zhitomirsky I
    J Phys Chem B; 2013 Feb; 117(6):1563-70. PubMed ID: 22662969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Rhamnolipids as Dispersing Agents for the Fabrication of Composite MnO
    Yang W; Liang W; Zhitomirsky I
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation of chemical and electrochemical conversion of SILAR grown Mn
    Desai MA; Vedpathak AS; Bhapkar AR; Saratale GD; Sartale SD
    J Environ Manage; 2021 Dec; 299():113564. PubMed ID: 34461462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and loading-dependent characteristics of nitrogen-doped graphene foam/carbon nanotube/manganese oxide ternary composite electrodes for high performance supercapacitors.
    Cheng T; Yu B; Cao L; Tan H; Li X; Zheng X; Li W; Ren Z; Bai J
    J Colloid Interface Sci; 2017 Sep; 501():1-10. PubMed ID: 28431216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binder-Free MnO
    Redkin AN; Mitina AA; Yakimov EE
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor.
    Shi P; Li L; Hua L; Qian Q; Wang P; Zhou J; Sun G; Huang W
    ACS Nano; 2017 Jan; 11(1):444-452. PubMed ID: 28027441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal synthesis of CuO@MnO
    Kakani V; Ramesh S; Yadav HM; Bathula C; Basivi PK; Palem RR; Kim HS; Pasupuletti VR; Lee H; Kim H
    Sci Rep; 2022 Sep; 12(1):12951. PubMed ID: 36127493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors.
    Shi K; Zhitomirsky I
    J Colloid Interface Sci; 2013 Oct; 407():474-81. PubMed ID: 23880521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes.
    Higgins TM; McAteer D; Coelho JC; Mendoza Sanchez B; Gholamvand Z; Moriarty G; McEvoy N; Berner NC; Duesberg GS; Nicolosi V; Coleman JN
    ACS Nano; 2014 Sep; 8(9):9567-79. PubMed ID: 25199042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite electrodes for electrochemical supercapacitors.
    Li J; Yang Q; Zhitomirsky I
    Nanoscale Res Lett; 2010 Jan; 5(3):512-7. PubMed ID: 20672101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoretic assembly of organic molecules and composites for electrochemical supercapacitors.
    Su Y; Zhitomirsky I
    J Colloid Interface Sci; 2013 Feb; 392():247-255. PubMed ID: 23141761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal-electrochemical fabrication strategies for functional composites of linear polyethylenimine.
    Wang ZZ; Clifford A; Milne J; Mathews R; Zhitomirsky I
    J Colloid Interface Sci; 2019 Sep; 552():1-8. PubMed ID: 31102846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.