BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 29331915)

  • 1. Theory of water treatment by capacitive deionization with redox active porous electrodes.
    He F; Biesheuvel PM; Bazant MZ; Hatton TA
    Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes.
    Tang W; He D; Zhang C; Kovalsky P; Waite TD
    Water Res; 2017 Sep; 120():229-237. PubMed ID: 28500988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review.
    Zhang C; He D; Ma J; Tang W; Waite TD
    Water Res; 2018 Jan; 128():314-330. PubMed ID: 29107916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.
    Suss ME; Biesheuvel PM; Baumann TF; Stadermann M; Santiago JG
    Environ Sci Technol; 2014; 48(3):2008-15. PubMed ID: 24433022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes.
    Hemmatifar A; Oyarzun DI; Palko JW; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2017 Oct; 122():387-397. PubMed ID: 28622631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of titanium carburizing electrodes for capacitive deionization.
    Li W; Lei L; Yun Z; Jiangtao F
    Water Sci Technol; 2017 Aug; 76(3-4):754-760. PubMed ID: 28799922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic tradeoff between kinetic and energetic efficiencies in membrane capacitive deionization.
    Wang L; Lin S
    Water Res; 2018 Feb; 129():394-401. PubMed ID: 29174829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary surface charge for enhanced capacitive deionization.
    Gao X; Porada S; Omosebi A; Liu KL; Biesheuvel PM; Landon J
    Water Res; 2016 Apr; 92():275-82. PubMed ID: 26878361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance identification and rational process design in Capacitive Deionization.
    Dykstra JE; Zhao R; Biesheuvel PM; van der Wal A
    Water Res; 2016 Jan; 88():358-370. PubMed ID: 26512814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of pH changes in water desalination by capacitive deionization.
    Dykstra JE; Keesman KJ; Biesheuvel PM; van der Wal A
    Water Res; 2017 Aug; 119():178-186. PubMed ID: 28458059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing capacitive deionization technology as an effective method for water treatment using commercially available graphene.
    Dursun D; Ozkul S; Yuksel R; Unalan HE
    Water Sci Technol; 2017 Feb; 75(3-4):643-649. PubMed ID: 28192358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization.
    Han L; Karthikeyan KG; Anderson MA; Gregory KB
    J Colloid Interface Sci; 2014 Sep; 430():93-9. PubMed ID: 24998059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI.
    Ma J; He C; He D; Zhang C; Waite TD
    Water Res; 2018 Nov; 144():296-303. PubMed ID: 30053621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.