These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29332028)

  • 1. Possible erythrocyte contributions to and exacerbation of the post-thrombolytic no-reflow phenomenon.
    Yu SJ; Buerck JP; O'Rear EA; Whitsett TL
    Biorheology; 2018; 54(2-4):81-93. PubMed ID: 29332028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased red blood cell deformability and decreased aggregation as potential adaptive mechanisms in the slow coronary flow phenomenon.
    Yaylali YT; Susam I; Demir E; Bor-Kucukatay M; Uludag B; Kilic-Toprak E; Erken G; Dursunoglu D
    Coron Artery Dis; 2013 Jan; 24(1):11-5. PubMed ID: 23111584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Venous insufficiency and hemorheology. Influence of venous stasis on erythrocyte aggregation and disaggregation].
    Le Devehat C; Vimeux M; Bertrand A
    J Mal Vasc; 1989; 14(4):307-11. PubMed ID: 2584888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine transport, erythrocyte deformability and microvascular dysfunction: an unrecognized potential role for dipyridamole therapy.
    Bhavsar J; Rosenson RS
    Clin Hemorheol Microcirc; 2010; 44(3):193-205. PubMed ID: 20364065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The rheological properties of the erythrocytes. Current study methods].
    Katiukhin LN
    Fiziol Zh Im I M Sechenova; 1995 Jun; 81(6):122-9. PubMed ID: 8845870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Newtonian viscosity of human blood: flow-induced changes in microstructure.
    Thurston GB
    Biorheology; 1994; 31(2):179-92. PubMed ID: 8729480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows.
    Zhang J; Johnson PC; Popel AS
    Microvasc Res; 2009 May; 77(3):265-72. PubMed ID: 19323969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemorheological dysfunction in cardiac syndrome X.
    Kilic-Toprak E; Yaylali O; Yaylali YT; Ozdemir Y; Yuksel D; Senol H; Sengoz T; Bor-Kucukatay M
    Acta Cardiol; 2018 Jun; 73(3):257-265. PubMed ID: 28889793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biorheological action of Ascaris lumbricoides larvae on human erythrocytes.
    de León PP; Del Balzo G; Riquelme B
    Cell Biochem Biophys; 2013 Mar; 65(2):237-42. PubMed ID: 22990360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filterability and other methods of approaching red cell deformability. Determinants of blood viscosity and red cell deformability.
    Chien S
    Scand J Clin Lab Invest Suppl; 1981; 156():7-12. PubMed ID: 6948403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Changes of blood viscosity and erythrocyte rheology in acute hypoxic hypoxia mices].
    Zhang M; Li XM; Feng J; Xu GJ; Liu XB; Jiang H; Niu CY; Zhao ZG
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2012 Sep; 28(5):454-7. PubMed ID: 23252303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does blood rheology revert to normal after myocardial infarction?
    Ernst E; Krauth U; Resch KL; Paulsen HF
    Br Heart J; 1990 Oct; 64(4):248-50. PubMed ID: 2223302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive value of admission red cell distribution width-platelet ratio for no-reflow phenomenon in acute ST segment elevation myocardial infarction undergoing primary percutaneous coronary intervention.
    Celık T; Balta S; Demır M; Yıldırım AO; Kaya MG; Ozturk C; Demırkol S; Unlu M; Kılıc S; Aydın İ; Iyısoy A
    Cardiol J; 2016; 23(1):84-92. PubMed ID: 26503078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the functional state of the erythrocyte membrane: significance for red cell filterability and blood viscosity.
    Larsson H; Persson SU; Hedner P
    Scand J Clin Lab Invest; 1990 Apr; 50(2):177-81. PubMed ID: 2339280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of flow geometry on blood viscoelasticity.
    Thurston GB; Henderson NM
    Biorheology; 2006; 43(6):729-46. PubMed ID: 17148856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased aggregation with normal surface charge and deformability of red blood cells in children with nephrotic syndrome.
    Böhler T; Linderkamp O; Leo A; Wingen AM; Schärer K
    Clin Nephrol; 1992 Sep; 38(3):119-24. PubMed ID: 1395161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of deformability, viscosity, and aggregation of mPEG-modified erythrocytes.
    Leach JK; Hinman A; O'Rear EA
    Biomed Sci Instrum; 2002; 38():333-8. PubMed ID: 12085627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The effects of mesenteric lymph drainage on erythrocyte rheology in rats with hemorrhagic shock].
    Zhao ZG; Nju CY; Hi ZP; Zhang M; Xu GJ; Jiang H; Zhang J
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2012 Mar; 28(2):149-53. PubMed ID: 22737918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcirculation and blood rheology abnormalities in chronic heart failure.
    Tikhomirova I; Petrochenko E; Muravyov A; Malysheva Y; Petrochenko A; Yakusevich V; Oslyakova A
    Clin Hemorheol Microcirc; 2017; 65(4):383-391. PubMed ID: 27814286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient increase in deformability of stressed red blood cells and role of plasma proteins.
    Kikuchi Y
    Jpn J Physiol; 1992; 42(3):431-41. PubMed ID: 1434104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.