BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29332291)

  • 1. Analysis of Reactive Carbonyl Species Generated Under Oxidative Stress.
    Mano J; Biswas MS
    Methods Mol Biol; 2018; 1743():117-124. PubMed ID: 29332291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism.
    Mano J
    Plant Physiol Biochem; 2012 Oct; 59():90-7. PubMed ID: 22578669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive Carbonyl Species Activate Caspase-3-Like Protease to Initiate Programmed Cell Death in Plants.
    Biswas MS; Mano J
    Plant Cell Physiol; 2016 Jul; 57(7):1432-1442. PubMed ID: 27106783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach.
    Mano J; Nagata M; Okamura S; Shiraya T; Mitsui T
    Plant Cell Physiol; 2014 Jul; 55(7):1233-44. PubMed ID: 24850833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A concise appraisal of lipid oxidation and lipoxidation in higher plants.
    Alché JD
    Redox Biol; 2019 May; 23():101136. PubMed ID: 30772285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid Peroxide-Derived Reactive Carbonyl Species as Mediators of Oxidative Stress and Signaling.
    Biswas MS; Mano J
    Front Plant Sci; 2021; 12():720867. PubMed ID: 34777410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls.
    Singh M; Kapoor A; Bhatnagar A
    Chem Biol Interact; 2015 Jun; 234():261-73. PubMed ID: 25559856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detoxification of Reactive Carbonyl Species by Glutathione Transferase Tau Isozymes.
    Mano J; Kanameda S; Kuramitsu R; Matsuura N; Yamauchi Y
    Front Plant Sci; 2019; 10():487. PubMed ID: 31068955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of Reactive Carbonyl Species, Which Mediate Reactive Oxygen Species Signals in Plant Cells.
    Mano J; Biswas MS; Sugimoto K; Murata Y
    Methods Mol Biol; 2022; 2526():201-213. PubMed ID: 35657522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histidine-Containing Dipeptides Mitigate Salt Stress in Plants by Scavenging Reactive Carbonyl Species.
    Sultana MS; Yamamoto SI; Biswas MS; Sakurai C; Isoai H; Mano J
    J Agric Food Chem; 2022 Sep; 70(36):11169-11178. PubMed ID: 36054836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress.
    Yin L; Mano J; Tanaka K; Wang S; Zhang M; Deng X; Zhang S
    Physiol Plant; 2017 Oct; 161(2):211-223. PubMed ID: 28432686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipids and proteins--major targets of oxidative modifications in abiotic stressed plants.
    Anjum NA; Sofo A; Scopa A; Roychoudhury A; Gill SS; Iqbal M; Lukatkin AS; Pereira E; Duarte AC; Ahmad I
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4099-121. PubMed ID: 25471723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive Carbonyl Species: A Missing Link in ROS Signaling.
    Mano J; Biswas MS; Sugimoto K
    Plants (Basel); 2019 Sep; 8(10):. PubMed ID: 31575078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Carbonyl-Detoxifying Enzymes by H
    Biswas MS; Terada R; Mano J
    Antioxidants (Basel); 2020 Feb; 9(2):. PubMed ID: 32041258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotenoid oxidation products as stress signals in plants.
    Havaux M
    Plant J; 2014 Aug; 79(4):597-606. PubMed ID: 24267746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipidomic analysis for carbonyl species derived from fish oil using liquid chromatography-tandem mass spectrometry.
    Suh JH; Niu YS; Hung WL; Ho CT; Wang Y
    Talanta; 2017 Jun; 168():31-42. PubMed ID: 28391860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation in plant programmed cell death.
    De Pinto MC; Locato V; De Gara L
    Plant Cell Environ; 2012 Feb; 35(2):234-44. PubMed ID: 21711357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation.
    Yuan Q; Zhu X; Sayre LM
    Chem Res Toxicol; 2007 Jan; 20(1):129-39. PubMed ID: 17226935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of the lipophilic reactive carbonyls present in biological specimens by LC/ESI-MS/MS.
    Tomono S; Miyoshi N; Ohshima H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Apr; 988():149-56. PubMed ID: 25777478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling lipid peroxidation-mediated regulation of redox homeostasis for sustaining plant health.
    Chakraborty N; Mitra R; Dasgupta D; Ganguly R; Acharya K; Minkina T; Popova V; Churyukina E; Keswani C
    Plant Physiol Biochem; 2024 Jan; 206():108272. PubMed ID: 38100892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.