BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29332803)

  • 1. Particle-based immobilized enzymatic reactors in microfluidic chips.
    Kecskemeti A; Gaspar A
    Talanta; 2018 Apr; 180():211-228. PubMed ID: 29332803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion.
    Kecskemeti A; Gaspar A
    Talanta; 2017 May; 166():275-283. PubMed ID: 28213235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis.
    Naldi M; Černigoj U; Štrancar A; Bartolini M
    Talanta; 2017 May; 167():143-157. PubMed ID: 28340705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification with highly-homogeneous porous silica layer for enzyme immobilization in capillary enzyme microreactors.
    Liu X; Zhu X; Camara MA; Qu Q; Shan Y; Yang L
    Talanta; 2019 May; 197():539-547. PubMed ID: 30771973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophilic monolith based immobilized enzyme reactors in capillary and on microchip for high-throughput proteomic analysis.
    Liang Y; Tao D; Ma J; Sun L; Liang Z; Zhang L; Zhang Y
    J Chromatogr A; 2011 May; 1218(20):2898-905. PubMed ID: 21450299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilized enzyme-based analytical tools in the -omics era: Recent advances.
    Naldi M; Tramarin A; Bartolini M
    J Pharm Biomed Anal; 2018 Oct; 160():222-237. PubMed ID: 30099294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolith-based immobilized enzyme reactors: recent developments and applications for proteome analysis.
    Ma J; Zhang L; Liang Z; Zhang W; Zhang Y
    J Sep Sci; 2007 Nov; 30(17):3050-9. PubMed ID: 18027897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of proteolytic enzymes on replica-molded thiol-ene micropillar reactors via thiol-gold interaction.
    Tähkä S; Sarfraz J; Urvas L; Provenzani R; Wiedmer SK; Peltonen J; Jokinen V; Sikanen T
    Anal Bioanal Chem; 2019 Apr; 411(11):2339-2349. PubMed ID: 30899997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of immobilized enzyme reactors with pillar arrays into polydimethylsiloxane microchip.
    Nagy C; Kecskemeti A; Gaspar A
    Anal Chim Acta; 2020 Apr; 1108():70-78. PubMed ID: 32222246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Immobilized Enzymatic Reactors for Proteomic Analyses-Recent Developments and Trends (2017-2021).
    Nagy C; Szabo R; Gaspar A
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thiol-ene microfluidic device enabling continuous enzymatic digestion and electrophoretic separation as front-end to mass spectrometric peptide analysis.
    Lu N; Sticker D; Kretschmann A; Petersen NJ; Kutter JP
    Anal Bioanal Chem; 2020 Jun; 412(15):3559-3571. PubMed ID: 32253474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a polystyrene microfluidic chip coupled to electrospray ionization mass spectrometry for protein analysis.
    Hu X; Dong Y; He Q; Chen H; Zhu Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 May; 990():96-103. PubMed ID: 25864010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle-based liquid chromatographic separations in microfluidic devices - A review.
    Kecskemeti A; Gaspar A
    Anal Chim Acta; 2018 Aug; 1021():1-19. PubMed ID: 29681275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances in capillary-based immobilized enzyme microreactor based on DNA-directed immobilization].
    Song J; Li M; Shen H; Zhou Z; He W; Su P; Yang Y
    Se Pu; 2020 Oct; 38(10):1206-1210. PubMed ID: 34213117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary electrophoresis-based immobilized enzyme reactor using particle-packing technique.
    Liu L; Zhang B; Zhang Q; Shi Y; Guo L; Yang L
    J Chromatogr A; 2014 Jul; 1352():80-6. PubMed ID: 24913370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated microfluidic chip for on-line proteome analysis with combination of denaturing and rapid digestion of protein.
    Wei Z; Fan P; Jiao Y; Wang Y; Huang Y; Liu Z
    Anal Chim Acta; 2020 Mar; 1102():1-10. PubMed ID: 32043988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of immobilized-pepsin microreactors coupled to nano liquid chromatography and tandem mass spectrometry for the quantitative analysis of human butyrylcholinesterase.
    Bonichon M; Combès A; Desoubries C; Bossée A; Pichon V
    J Chromatogr A; 2016 Aug; 1461():84-91. PubMed ID: 27492594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-immobilized reactors for rapid and efficient sample preparation in MS-based proteomic studies.
    Yamaguchi H; Miyazaki M
    Proteomics; 2013 Feb; 13(3-4):457-66. PubMed ID: 23255229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of various immobilized enzymatic microreactors coupled on-line with liquid chromatography and mass spectrometry detection for quantitative analysis of cytochrome c.
    Cingöz A; Hugon-Chapuis F; Pichon V
    J Chromatogr A; 2008 Oct; 1209(1-2):95-103. PubMed ID: 18823630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Recent advances in microchip liquid chromatography].
    Wen H; Zhu J; Zhang B
    Se Pu; 2021 Apr; 39(4):357-367. PubMed ID: 34227755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.