These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29332844)

  • 1. Understanding carbon nanotube channel formation in the lipid membrane.
    Choi MK; Kim H; Lee BH; Kim T; Rho J; Kim MK; Kim K
    Nanotechnology; 2018 Mar; 29(11):115702. PubMed ID: 29332844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of carbon nanotube porins in lipid bilayers.
    Vögele M; Köfinger J; Hummer G
    Faraday Discuss; 2018 Sep; 209(0):341-358. PubMed ID: 29974904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Nanotubes Mediate Fusion of Lipid Vesicles.
    Bhaskara RM; Linker SM; Vögele M; Köfinger J; Hummer G
    ACS Nano; 2017 Feb; 11(2):1273-1280. PubMed ID: 28103440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoporous Membranes of Densely Packed Carbon Nanotubes Formed by Lipid-Mediated Self-Assembly.
    Vögele M; Köfinger J; Hummer G
    ACS Appl Bio Mater; 2024 Feb; 7(2):528-534. PubMed ID: 36070609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes.
    Sheng J; Zhu Q; Zeng X; Yang Z; Zhang X
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11009-11015. PubMed ID: 28264153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes.
    Geng J; Kim K; Zhang J; Escalada A; Tunuguntla R; Comolli LR; Allen FI; Shnyrova AV; Cho KR; Munoz D; Wang YM; Grigoropoulos CP; Ajo-Franklin CM; Frolov VA; Noy A
    Nature; 2014 Oct; 514(7524):612-5. PubMed ID: 25355362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study.
    Wallace EJ; Sansom MS
    Nano Lett; 2008 Sep; 8(9):2751-6. PubMed ID: 18665655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling water flow inside carbon nanotube with lipid membranes.
    Feng JW; Ding HM; Ma YQ
    J Chem Phys; 2014 Sep; 141(9):094901. PubMed ID: 25194388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nanotube express: Delivering a stapled peptide to the cell surface.
    Holdbrook DA; Marzinek JK; Boncel S; Boags A; Tan YS; Huber RG; Verma CS; Bond PJ
    J Colloid Interface Sci; 2021 Dec; 604():670-679. PubMed ID: 34280765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extension of coarse-grained UNRES force field to treat carbon nanotubes.
    Sieradzan AK; Mozolewska MA
    J Mol Model; 2018 Apr; 24(5):121. PubMed ID: 29700628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube self-assembly with lipids and detergent: a molecular dynamics study.
    Wallace EJ; Sansom MS
    Nanotechnology; 2009 Jan; 20(4):045101. PubMed ID: 19417309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane perturbation by carbon nanotube insertion: pathways to internalization.
    Lelimousin M; Sansom MS
    Small; 2013 Nov; 9(21):3639-46. PubMed ID: 23418066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained modeling of polystyrene-modified CNTs and their interactions with lipid bilayers.
    Gul G; Faller R; Ileri-Ercan N
    Biophys J; 2023 May; 122(10):1748-1761. PubMed ID: 37056052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular Self-Assembly of Dipalmitoylphosphatidylcholine and Carbon Nanotubes: A Dissipative Particle Dynamics Simulation Study.
    Keshtkar M; Mehdipour N; Eslami H
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control performance and biomembrane disturbance of carbon nanotube artificial water channels by nitrogen-doping.
    Yang Y; Li X; Jiang J; Du H; Zhao L; Zhao Y
    ACS Nano; 2010 Oct; 4(10):5755-62. PubMed ID: 20919730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems.
    Ortega-Guerrero A; Espinosa-Duran JM; Velasco-Medina J
    Eur Biophys J; 2016 Jul; 45(5):423-33. PubMed ID: 26872481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent-organic framework as a template to assemble carbon nanotubes into a high-density membrane: computational demonstration.
    Hu Z; Jiang J
    Nanoscale; 2014 Jan; 6(2):772-7. PubMed ID: 24177227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.
    Brady GJ; Way AJ; Safron NS; Evensen HT; Gopalan P; Arnold MS
    Sci Adv; 2016 Sep; 2(9):e1601240. PubMed ID: 27617293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.