These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29332947)

  • 1. A tunable coupler for superconducting microwave resonators using a nonlinear kinetic inductance transmission line.
    Bockstiegel C; Wang Y; Vissers MR; Wei LF; Chaudhuri S; Hubmayr J; Gao J
    Appl Phys Lett; 2016 May; 108(22):. PubMed ID: 29332947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing Gate-Controlled Supercurrent for All-Metallic Tunable Superconducting Microwave Resonators.
    Ryu Y; Jeong J; Suh J; Kim J; Choi H; Cha J
    Nano Lett; 2024 Jan; 24(4):1223-1230. PubMed ID: 38232153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and Characterization of Superconducting Resonators.
    Cataldo G; Barrentine EM; Brown AD; Moseley SH; U-Yen K; Wollack EJ
    J Vis Exp; 2016 May; (111):. PubMed ID: 27284966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Superconducting Cavity using Superconducting Quantum Interference Device Metamaterials.
    Kim S; Shrekenhamer D; McElroy K; Strikwerda A; Alldredge J
    Sci Rep; 2019 Mar; 9(1):4630. PubMed ID: 30874574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications.
    Roos AK; Scarano E; Arvidsson EK; Holmgren E; Haviland DB
    Beilstein J Nanotechnol; 2024; 15():242-255. PubMed ID: 38379930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator.
    Allman MS; Altomare F; Whittaker JD; Cicak K; Li D; Sirois A; Strong J; Teufel JD; Simmonds RW
    Phys Rev Lett; 2010 Apr; 104(17):177004. PubMed ID: 20482130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective active resonance tuning for multi-mode nonlinear photonic cavities.
    Logan AD; Yama NS; Fu KC
    Opt Express; 2024 Apr; 32(8):13396-13407. PubMed ID: 38859311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A passive terahertz video camera based on lumped element kinetic inductance detectors.
    Rowe S; Pascale E; Doyle S; Dunscombe C; Hargrave P; Papageorgio A; Wood K; Ade PA; Barry P; Bideaud A; Brien T; Dodd C; Grainger W; House J; Mauskopf P; Moseley P; Spencer L; Sudiwala R; Tucker C; Walker I
    Rev Sci Instrum; 2016 Mar; 87(3):033105. PubMed ID: 27036756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron Spin Resonance at the Level of 10^{4} Spins Using Low Impedance Superconducting Resonators.
    Eichler C; Sigillito AJ; Lyon SA; Petta JR
    Phys Rev Lett; 2017 Jan; 118(3):037701. PubMed ID: 28157376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh Kinetic Inductance Superconducting Materials from Spinodal Decomposition.
    Gao R; Ku HS; Deng H; Yu W; Xia T; Wu F; Song Z; Wang M; Miao X; Zhang C; Lin Y; Shi Y; Zhao HH; Deng C
    Adv Mater; 2022 Aug; 34(32):e2201268. PubMed ID: 35678176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flux-tunable heat sink for quantum electric circuits.
    Partanen M; Tan KY; Masuda S; Govenius J; Lake RE; Jenei M; Grönberg L; Hassel J; Simbierowicz S; Vesterinen V; Tuorila J; Ala-Nissila T; Möttönen M
    Sci Rep; 2018 Apr; 8(1):6325. PubMed ID: 29679059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuner and radiation shield for planar electron paramagnetic resonance microresonators.
    Narkowicz R; Suter D
    Rev Sci Instrum; 2015 Feb; 86(2):024701. PubMed ID: 25725864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast tunable coupler for superconducting qubits.
    Bialczak RC; Ansmann M; Hofheinz M; Lenander M; Lucero E; Neeley M; O'Connell AD; Sank D; Wang H; Weides M; Wenner J; Yamamoto T; Cleland AN; Martinis JM
    Phys Rev Lett; 2011 Feb; 106(6):060501. PubMed ID: 21405448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Characteristics of a Nanomechanical Resonator Coupled to a Superconducting LC Resonator in Quantum Computing Systems.
    Choi JR; Ju S
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30586906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing.
    Vissers MR; Erickson RP; Ku HS; Vale L; Wu X; Hilton G; Pappas DP
    Appl Phys Lett; 2016; 108():. PubMed ID: 27114615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catch-disperse-release readout for superconducting qubits.
    Sete EA; Galiautdinov A; Mlinar E; Martinis JM; Korotkov AN
    Phys Rev Lett; 2013 May; 110(21):210501. PubMed ID: 23745846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superconducting Cavity Electromechanics: The Realization of an Acoustic Frequency Comb at Microwave Frequencies.
    Han X; Zou CL; Fu W; Xu M; Xu Y; Tang HX
    Phys Rev Lett; 2022 Sep; 129(10):107701. PubMed ID: 36112440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Coupling between Magnons and Microwave Photons in On-Chip Ferromagnet-Superconductor Thin-Film Devices.
    Li Y; Polakovic T; Wang YL; Xu J; Lendinez S; Zhang Z; Ding J; Khaire T; Saglam H; Divan R; Pearson J; Kwok WK; Xiao Z; Novosad V; Hoffmann A; Zhang W
    Phys Rev Lett; 2019 Sep; 123(10):107701. PubMed ID: 31573284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiative Cooling of a Superconducting Resonator.
    Xu M; Han X; Zou CL; Fu W; Xu Y; Zhong C; Jiang L; Tang HX
    Phys Rev Lett; 2020 Jan; 124(3):033602. PubMed ID: 32031838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling microwave photons to a mechanical resonator using quantum interference.
    Rodrigues IC; Bothner D; Steele GA
    Nat Commun; 2019 Nov; 10(1):5359. PubMed ID: 31767836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.