BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29332957)

  • 1. In depth examination of impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus.
    Munoz-Pinto DJ; Samavedi S; Grigoryan B; Hahn MS
    Polymer (Guildf); 2015 Oct; 77():227-238. PubMed ID: 29332957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size.
    Browning MB; Wilems T; Hahn M; Cosgriff-Hernandez E
    J Biomed Mater Res A; 2011 Aug; 98(2):268-73. PubMed ID: 21626658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling Fluid Diffusion and Release through Mixed-Molecular-Weight Poly(ethylene) Glycol Diacrylate (PEGDA) Hydrogels.
    O'Donnell K; Boyd A; Meenan BJ
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31623186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro.
    Sokic S; Papavasiliou G
    Tissue Eng Part A; 2012 Dec; 18(23-24):2477-86. PubMed ID: 22725267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical behavior of bioactive poly(ethylene glycol) diacrylate matrices for biomedical application.
    Della Sala F; Biondi M; Guarnieri D; Borzacchiello A; Ambrosio L; Mayol L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103885. PubMed ID: 32957192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of molecular weight and loading on matrix metalloproteinase-2 mediated release from poly(ethylene glycol) diacrylate hydrogels.
    Ross AE; Tang MY; Gemeinhart RA
    AAPS J; 2012 Sep; 14(3):482-90. PubMed ID: 22535508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior.
    Munoz-Pinto DJ; Bulick AS; Hahn MS
    J Biomed Mater Res A; 2009 Jul; 90(1):303-16. PubMed ID: 19402139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a biostable replacement for PEGDA hydrogels.
    Browning MB; Cosgriff-Hernandez E
    Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion.
    Peter M; Singh A; Mohankumar K; Jeenger R; Joge PA; Gatne MM; Tayalia P
    ACS Appl Bio Mater; 2019 Feb; 2(2):916-929. PubMed ID: 35016295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene glycol) diacrylate/hyaluronic acid semi-interpenetrating network compositions for 3-D cell spreading and migration.
    Lee HJ; Sen A; Bae S; Lee JS; Webb K
    Acta Biomater; 2015 Mar; 14():43-52. PubMed ID: 25523876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Characterization of Poly(Ethylene Glycol) Based Thermo-Responsive Hydrogels for Cell Sheet Engineering.
    Son KH; Lee JW
    Materials (Basel); 2016 Oct; 9(10):. PubMed ID: 28773974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production and phenotype.
    Liao H; Munoz-Pinto D; Qu X; Hou Y; Grunlan MA; Hahn MS
    Acta Biomater; 2008 Sep; 4(5):1161-71. PubMed ID: 18515199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral and rotational mobility of some drug molecules in a poly(ethylene glycol) diacrylate hydrogel and the effect of drug-cyclodextrin complexation.
    Tomić K; Veeman WS; Boerakker M; Litvinov VM; Dias AA
    J Pharm Sci; 2008 Aug; 97(8):3245-56. PubMed ID: 18064700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Application.
    Testore D; Zoso A; Kortaberria G; Sangermano M; Chiono V
    Front Bioeng Biotechnol; 2022; 10():897575. PubMed ID: 35814009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating Functionalized Poly(ethylene glycol) Diacrylate Hydrogel Mechanical Properties through Competitive Crosslinking Mechanics for Soft Tissue Applications.
    Chapla R; Alhaj Abed M; West J
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33339216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the in vivo degradation mechanism of PEGDA hydrogels.
    Browning MB; Cereceres SN; Luong PT; Cosgriff-Hernandez EM
    J Biomed Mater Res A; 2014 Dec; 102(12):4244-51. PubMed ID: 24464985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photopolymerized injectable RGD-modified fumarated poly(ethylene glycol) diglycidyl ether hydrogels for cell growth.
    Akdemir ZS; Akçakaya H; Kahraman MV; Ceyhan T; Kayaman-Apohan N; Güngör A
    Macromol Biosci; 2008 Sep; 8(9):852-62. PubMed ID: 18504803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels.
    Jin T; Stanciulescu I
    Acta Biomater; 2017 Feb; 49():247-259. PubMed ID: 27856282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells.
    Buxton AN; Zhu J; Marchant R; West JL; Yoo JU; Johnstone B
    Tissue Eng; 2007 Oct; 13(10):2549-60. PubMed ID: 17655489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.