These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 29333206)
1. Nonlinear Joint Latent Variable Models and Integrative Tumor Subtype Discovery. Liu B; Shen X; Pan W Stat Anal Data Min; 2016 Apr; 9(2):106-116. PubMed ID: 29333206 [TBL] [Abstract][Full Text] [Related]
2. Integrative and regularized principal component analysis of multiple sources of data. Liu B; Shen X; Pan W Stat Med; 2016 Jun; 35(13):2235-50. PubMed ID: 26756854 [TBL] [Abstract][Full Text] [Related]
3. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Shen R; Olshen AB; Ladanyi M Bioinformatics; 2009 Nov; 25(22):2906-12. PubMed ID: 19759197 [TBL] [Abstract][Full Text] [Related]
4. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Mo Q; Shen R; Guo C; Vannucci M; Chan KS; Hilsenbeck SG Biostatistics; 2018 Jan; 19(1):71-86. PubMed ID: 28541380 [TBL] [Abstract][Full Text] [Related]
5. Bayesian variable selection with graphical structure learning: Applications in integrative genomics. Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495 [TBL] [Abstract][Full Text] [Related]
6. The topographic organization and visualization of binary data using multivariate-Bernoulli latent variable models. Girolami M IEEE Trans Neural Netw; 2001; 12(6):1367-74. PubMed ID: 18249966 [TBL] [Abstract][Full Text] [Related]
7. A Bayesian two-way latent structure model for genomic data integration reveals few pan-genomic cluster subtypes in a breast cancer cohort. Swanson DM; Lien T; Bergholtz H; Sørlie T; Frigessi A Bioinformatics; 2019 Dec; 35(23):4886-4897. PubMed ID: 31077301 [TBL] [Abstract][Full Text] [Related]
8. Latent Feature Decompositions for Integrative Analysis of Multi-Platform Genomic Data. Gregory KB; Momin AA; Coombes KR; Baladandayuthapani V IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):984-94. PubMed ID: 26146492 [TBL] [Abstract][Full Text] [Related]
9. SPARSE INTEGRATIVE CLUSTERING OF MULTIPLE OMICS DATA SETS. Shen R; Wang S; Mo Q Ann Appl Stat; 2013 Apr; 7(1):269-294. PubMed ID: 24587839 [TBL] [Abstract][Full Text] [Related]
10. A Bayesian framework for pathway-guided identification of cancer subgroups by integrating multiple types of genomic data. Sun Z; Chung D; Neelon B; Millar-Wilson A; Ethier SP; Xiao F; Zheng Y; Wallace K; Hardiman G Stat Med; 2023 Dec; 42(28):5266-5284. PubMed ID: 37715500 [TBL] [Abstract][Full Text] [Related]
11. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents. Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238 [TBL] [Abstract][Full Text] [Related]
12. Generative Topographic Mapping (GTM): Universal Tool for Data Visualization, Structure-Activity Modeling and Dataset Comparison. Kireeva N; Baskin II; Gaspar HA; Horvath D; Marcou G; Varnek A Mol Inform; 2012 Apr; 31(3-4):301-12. PubMed ID: 27477099 [TBL] [Abstract][Full Text] [Related]
14. Gaussian process based nonlinear latent structure discovery in multivariate spike train data. Wu A; Roy NA; Keeley S; Pillow JW Adv Neural Inf Process Syst; 2017 Dec; 30():3496-3505. PubMed ID: 31244512 [TBL] [Abstract][Full Text] [Related]
15. Clustering and variable selection in the presence of mixed variable types and missing data. Storlie CB; Myers SM; Katusic SK; Weaver AL; Voigt RG; Croarkin PE; Stoeckel RE; Port JD Stat Med; 2018 May; ():. PubMed ID: 29774571 [TBL] [Abstract][Full Text] [Related]
16. Integrative clustering of high-dimensional data with joint and individual clusters. Hellton KH; Thoresen M Biostatistics; 2016 Jul; 17(3):537-48. PubMed ID: 26917056 [TBL] [Abstract][Full Text] [Related]
17. Data Visualization, Regression, Applicability Domains and Inverse Analysis Based on Generative Topographic Mapping. Kaneko H Mol Inform; 2019 Mar; 38(3):e1800088. PubMed ID: 30259699 [TBL] [Abstract][Full Text] [Related]
18. Expert-Guided Generative Topographical Modeling with Visual to Parametric Interaction. Han C; House L; Leman SC PLoS One; 2016; 11(2):e0129122. PubMed ID: 26905728 [TBL] [Abstract][Full Text] [Related]
19. Deep Generative Mixture Model for Robust Imbalance Classification. Wang X; Jing L; Lyu Y; Guo M; Wang J; Liu H; Yu J; Zeng T IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):2897-2912. PubMed ID: 35648874 [TBL] [Abstract][Full Text] [Related]
20. Latent variable modeling improves AKI risk factor identification and AKI prediction compared to traditional methods. Smith LE; Smith DK; Blume JD; Siew ED; Billings FT BMC Nephrol; 2017 Feb; 18(1):55. PubMed ID: 28178929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]