These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 29333213)

  • 1. Chronic Kidney Disease and Disproportionally Increased Cardiovascular Damage: Does Oxidative Stress Explain the Burden?
    Duni A; Liakopoulos V; Rapsomanikis KP; Dounousi E
    Oxid Med Cell Longev; 2017; 2017():9036450. PubMed ID: 29333213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide and oxidative stress in vascular disease.
    Förstermann U
    Pflugers Arch; 2010 May; 459(6):923-39. PubMed ID: 20306272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells.
    Dou L; Jourde-Chiche N; Faure V; Cerini C; Berland Y; Dignat-George F; Brunet P
    J Thromb Haemost; 2007 Jun; 5(6):1302-8. PubMed ID: 17403109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting NADPH oxidases in vascular pharmacology.
    Schramm A; Matusik P; Osmenda G; Guzik TJ
    Vascul Pharmacol; 2012; 56(5-6):216-31. PubMed ID: 22405985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular oxidative stress, nitric oxide and atherosclerosis.
    Li H; Horke S; Förstermann U
    Atherosclerosis; 2014 Nov; 237(1):208-19. PubMed ID: 25244505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species.
    Lee DY; Wauquier F; Eid AA; Roman LJ; Ghosh-Choudhury G; Khazim K; Block K; Gorin Y
    J Biol Chem; 2013 Oct; 288(40):28668-86. PubMed ID: 23940049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress, antioxidants, and endothelial function.
    Schulz E; Anter E; Keaney JF
    Curr Med Chem; 2004 May; 11(9):1093-104. PubMed ID: 15134508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction.
    Kaysen GA; Eiserich JP
    J Am Soc Nephrol; 2004 Mar; 15(3):538-48. PubMed ID: 14978155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress.
    Schulz E; Wenzel P; Münzel T; Daiber A
    Antioxid Redox Signal; 2014 Jan; 20(2):308-24. PubMed ID: 22657349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress.
    Cai H; Harrison DG
    Circ Res; 2000 Nov; 87(10):840-4. PubMed ID: 11073878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH oxidase-induced oxidative stress in the eyes of hypertensive rats.
    Santana-Garrido Á; Reyes-Goya C; Fernández-Bobadilla C; Blanca AJ; André H; Mate A; Vázquez CM
    Mol Vis; 2021; 27():161-178. PubMed ID: 33907371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Oxidative Stress in Atherosclerosis.
    Batty M; Bennett MR; Yu E
    Cells; 2022 Nov; 11(23):. PubMed ID: 36497101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathophysiological role of oxidative stress in systolic and diastolic heart failure and its therapeutic implications.
    Münzel T; Gori T; Keaney JF; Maack C; Daiber A
    Eur Heart J; 2015 Oct; 36(38):2555-64. PubMed ID: 26142467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indoxyl sulfate potentiates endothelial dysfunction via reciprocal role for reactive oxygen species and RhoA/ROCK signaling in 5/6 nephrectomized rats.
    Chu S; Mao X; Guo H; Wang L; Li Z; Zhang Y; Wang Y; Wang H; Zhang X; Peng W
    Free Radic Res; 2017 Mar; 51(3):237-252. PubMed ID: 28277985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH oxidase-derived reactive oxygen species contribute to impaired cutaneous microvascular function in chronic kidney disease.
    DuPont JJ; Ramick MG; Farquhar WB; Townsend RR; Edwards DG
    Am J Physiol Renal Physiol; 2014 Jun; 306(12):F1499-506. PubMed ID: 24761000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission.
    Huang M; Wei R; Wang Y; Su T; Li P; Chen X
    Redox Biol; 2018 Jun; 16():303-313. PubMed ID: 29573704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ApoA-1 mimetic peptide reverses uremia-induced upregulation of pro-atherogenic pathways in the aorta.
    Vaziri ND; Bai Y; Yuan J; Said HL; Sigala W; Ni Z
    Am J Nephrol; 2010; 32(3):201-211. PubMed ID: 20639628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative Stress and Hypertensive Diseases.
    Loperena R; Harrison DG
    Med Clin North Am; 2017 Jan; 101(1):169-193. PubMed ID: 27884227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress in patients with cardiovascular disease and chronic renal failure.
    Popolo A; Autore G; Pinto A; Marzocco S
    Free Radic Res; 2013 May; 47(5):346-56. PubMed ID: 23438723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function.
    Daiber A; Di Lisa F; Oelze M; Kröller-Schön S; Steven S; Schulz E; Münzel T
    Br J Pharmacol; 2017 Jun; 174(12):1670-1689. PubMed ID: 26660451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.