These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2933361)

  • 1. AUR memorial Award. Induced alignment of flowing sickle erythrocytes in a magnetic field. A preliminary report.
    Brody AS; Sorette MP; Gooding CA; Listerud J; Clark MR; Mentzer WC; Brasch RC; James TL
    Invest Radiol; 1985 Sep; 20(6):560-6. PubMed ID: 2933361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfluorocarbon compounds: effects on the rheological properties of sickle erythrocytes in vitro.
    Reindorf CA; Kurantsin-Mills J; Allotey JB; Castro O
    Am J Hematol; 1985 Jul; 19(3):229-36. PubMed ID: 4014223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sickle erythrocytes adhere to endothelial cell monolayers (ECM's) exposed to flowing blood.
    Grabowski EF
    Prog Clin Biol Res; 1987; 240():167-79. PubMed ID: 3615485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The paradox of the serrated sickle erythrocyte: The importance of the red blood cell membrane topography.
    Ballas SK; Connes P
    Clin Hemorheol Microcirc; 2015 Oct; 63(2):149-52. PubMed ID: 26484716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological studies of erythrocyte-endothelial cell interactions in sickle cell disease.
    Barabino GA; McIntire LV; Eskin SG; Sears DA; Udden M
    Prog Clin Biol Res; 1987; 240():113-27. PubMed ID: 3615482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of sickle cells and its role in microcirculatory dynamics.
    Chien S; Kaperonis AA; King RG; Lipowsky HH; Schmalzer EA; Sung LA; Sung KL; Usami S
    Prog Clin Biol Res; 1987; 240():151-65. PubMed ID: 3615484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sickle cell anemia as a rheologic disease.
    Horne MK
    Am J Med; 1981 Feb; 70(2):288-98. PubMed ID: 7008586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the water environments in deoxygenated sickle cells by longitudinal and transverse water proton relaxation rates.
    Thompson BC; Waterman MR; Cottam GL
    Arch Biochem Biophys; 1975 Jan; 166(1):193-200. PubMed ID: 1122135
    [No Abstract]   [Full Text] [Related]  

  • 9. [Magnetic resonance imaging in patients with sickle cell anemia].
    Santini MT; Buoni C; Indovina P; Passariello R
    Radiol Med; 1993 Dec; 86(6):755-8. PubMed ID: 8295992
    [No Abstract]   [Full Text] [Related]  

  • 10. Red blood cell magnetophoresis.
    Zborowski M; Ostera GR; Moore LR; Milliron S; Chalmers JJ; Schechter AN
    Biophys J; 2003 Apr; 84(4):2638-45. PubMed ID: 12668472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into red cell rheology and adhesion in patients with sickle cell anaemia during vaso-occlusive crises.
    Lapoumeroulie C; Connes P; El Hoss S; Hierso R; Charlot K; Lemonne N; Elion J; Le Van Kim C; Romana M; Hardy-Dessources MD
    Br J Haematol; 2019 Jun; 185(5):991-994. PubMed ID: 30467840
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanics and biorheology of red blood cells in sickle cell anemia.
    Li X; Dao M; Lykotrafitis G; Karniadakis GE
    J Biomech; 2017 Jan; 50():34-41. PubMed ID: 27876368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration.
    Evans E; Mohandas N; Leung A
    J Clin Invest; 1984 Feb; 73(2):477-88. PubMed ID: 6699172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological assessment of antisickling effects of pyridoxine and pyridoxal.
    Kuranstin-Mills J; Lessin LS
    Blood Cells; 1982; 8(2):315-28. PubMed ID: 7159755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen transport studies of normal and sickle erythrocyte suspensions in artificial capillaries.
    Stathopoulos NA; Hellums JD
    Adv Exp Med Biol; 1986; 200():35-41. PubMed ID: 3799323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of rheologically optimal mixtures of AA and SS erythrocytes for transfusion.
    Lessin LS; Kurantsin-Mills J; Klug PP; Weems HB
    Prog Clin Biol Res; 1978; 20():123-37. PubMed ID: 652814
    [No Abstract]   [Full Text] [Related]  

  • 18. An Experimental-Computational Approach to Quantify Blood Rheology in Sickle Cell Disease.
    Bazzi MS; Valdez JM; Barocas VH; Wood DK
    Biophys J; 2020 Dec; 119(11):2307-2315. PubMed ID: 33096079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular polymerization of sickle hemoglobin: disease severity and therapeutic goals.
    Noguchi CT; Rodgers GP; Schechter AN
    Prog Clin Biol Res; 1987; 240():381-91. PubMed ID: 3615501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preservation of sickle cell blood-flow patterns during MR imaging: an in vivo study.
    Brody AS; Embury SH; Mentzer WC; Winkler ML; Gooding CA
    AJR Am J Roentgenol; 1988 Jul; 151(1):139-41. PubMed ID: 3259797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.