These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 2933361)
1. AUR memorial Award. Induced alignment of flowing sickle erythrocytes in a magnetic field. A preliminary report. Brody AS; Sorette MP; Gooding CA; Listerud J; Clark MR; Mentzer WC; Brasch RC; James TL Invest Radiol; 1985 Sep; 20(6):560-6. PubMed ID: 2933361 [TBL] [Abstract][Full Text] [Related]
2. Perfluorocarbon compounds: effects on the rheological properties of sickle erythrocytes in vitro. Reindorf CA; Kurantsin-Mills J; Allotey JB; Castro O Am J Hematol; 1985 Jul; 19(3):229-36. PubMed ID: 4014223 [TBL] [Abstract][Full Text] [Related]
3. Sickle erythrocytes adhere to endothelial cell monolayers (ECM's) exposed to flowing blood. Grabowski EF Prog Clin Biol Res; 1987; 240():167-79. PubMed ID: 3615485 [TBL] [Abstract][Full Text] [Related]
4. The paradox of the serrated sickle erythrocyte: The importance of the red blood cell membrane topography. Ballas SK; Connes P Clin Hemorheol Microcirc; 2015 Oct; 63(2):149-52. PubMed ID: 26484716 [TBL] [Abstract][Full Text] [Related]
5. Rheological studies of erythrocyte-endothelial cell interactions in sickle cell disease. Barabino GA; McIntire LV; Eskin SG; Sears DA; Udden M Prog Clin Biol Res; 1987; 240():113-27. PubMed ID: 3615482 [TBL] [Abstract][Full Text] [Related]
6. Rheology of sickle cells and its role in microcirculatory dynamics. Chien S; Kaperonis AA; King RG; Lipowsky HH; Schmalzer EA; Sung LA; Sung KL; Usami S Prog Clin Biol Res; 1987; 240():151-65. PubMed ID: 3615484 [TBL] [Abstract][Full Text] [Related]
7. Sickle cell anemia as a rheologic disease. Horne MK Am J Med; 1981 Feb; 70(2):288-98. PubMed ID: 7008586 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the water environments in deoxygenated sickle cells by longitudinal and transverse water proton relaxation rates. Thompson BC; Waterman MR; Cottam GL Arch Biochem Biophys; 1975 Jan; 166(1):193-200. PubMed ID: 1122135 [No Abstract] [Full Text] [Related]
10. Red blood cell magnetophoresis. Zborowski M; Ostera GR; Moore LR; Milliron S; Chalmers JJ; Schechter AN Biophys J; 2003 Apr; 84(4):2638-45. PubMed ID: 12668472 [TBL] [Abstract][Full Text] [Related]
11. New insights into red cell rheology and adhesion in patients with sickle cell anaemia during vaso-occlusive crises. Lapoumeroulie C; Connes P; El Hoss S; Hierso R; Charlot K; Lemonne N; Elion J; Le Van Kim C; Romana M; Hardy-Dessources MD Br J Haematol; 2019 Jun; 185(5):991-994. PubMed ID: 30467840 [No Abstract] [Full Text] [Related]
12. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation. Dong C; Chadwick RS; Schechter AN Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913 [TBL] [Abstract][Full Text] [Related]
13. Biomechanics and biorheology of red blood cells in sickle cell anemia. Li X; Dao M; Lykotrafitis G; Karniadakis GE J Biomech; 2017 Jan; 50():34-41. PubMed ID: 27876368 [TBL] [Abstract][Full Text] [Related]
14. Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration. Evans E; Mohandas N; Leung A J Clin Invest; 1984 Feb; 73(2):477-88. PubMed ID: 6699172 [TBL] [Abstract][Full Text] [Related]
15. Rheological assessment of antisickling effects of pyridoxine and pyridoxal. Kuranstin-Mills J; Lessin LS Blood Cells; 1982; 8(2):315-28. PubMed ID: 7159755 [TBL] [Abstract][Full Text] [Related]
16. Oxygen transport studies of normal and sickle erythrocyte suspensions in artificial capillaries. Stathopoulos NA; Hellums JD Adv Exp Med Biol; 1986; 200():35-41. PubMed ID: 3799323 [TBL] [Abstract][Full Text] [Related]
17. Determination of rheologically optimal mixtures of AA and SS erythrocytes for transfusion. Lessin LS; Kurantsin-Mills J; Klug PP; Weems HB Prog Clin Biol Res; 1978; 20():123-37. PubMed ID: 652814 [No Abstract] [Full Text] [Related]