BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29333630)

  • 1. Efficient Supercapacitor Energy Storage Using Conjugated Microporous Polymer Networks Synthesized from Buchwald-Hartwig Coupling.
    Liao Y; Wang H; Zhu M; Thomas A
    Adv Mater; 2018 Mar; 30(12):e1705710. PubMed ID: 29333630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Redox Activity in Conjugated Microporous Polytriphenylamine Networks Using Pyridyl Building Blocks toward Efficient Supercapacitors.
    Li H; Lyu W; Liao Y
    Macromol Rapid Commun; 2019 Dec; 40(24):e1900455. PubMed ID: 31709638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Nanotube Template-Assisted Synthesis of Conjugated Microporous Polytriphenylamine with High Porosity for Efficient Supercapacitive Energy Storage.
    Zuo H; Duan J; Lyu B; Lyu W; Li Y; Mei X; Liao Y
    Macromol Rapid Commun; 2024 Jan; 45(1):e2300238. PubMed ID: 37335809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors.
    Li XC; Zhang Y; Wang CY; Wan Y; Lai WY; Pang H; Huang W
    Chem Sci; 2017 Apr; 8(4):2959-2965. PubMed ID: 28451362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sono-Cavitation and Nebulization-Based Synthesis of Conjugated Microporous Polymers for Energy Storage Applications.
    Roh DH; Shin H; Kim HT; Kwon TH
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61598-61609. PubMed ID: 34928128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High-Performance Asymmetric Supercapacitor Based on Tungsten Oxide Nanoplates and Highly Reduced Graphene Oxide Electrodes.
    Ashraf M; Shah SS; Khan I; Aziz MA; Ullah N; Khan M; Adil SF; Liaqat Z; Usman M; Tremel W; Tahir MN
    Chemistry; 2021 Apr; 27(23):6973-6984. PubMed ID: 33609404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving Ultrahigh Cycling Stability and Extended Potential Window for Supercapacitors through Asymmetric Combination of Conductive Polymer Nanocomposite and Activated Carbon.
    Gul H; Shah AA; Bilal S
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31615090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraordinary Thickness-Independent Electrochemical Energy Storage Enabled by Cross-Linked Microporous Carbon Nanosheets.
    Yuan G; Liang Y; Hu H; Li H; Xiao Y; Dong H; Liu Y; Zheng M
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26946-26955. PubMed ID: 31271278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated Microporous Carbon Derived from Almond Shells for High Energy Density Asymmetric Supercapacitors.
    Wu C; Yang S; Cai J; Zhang Q; Zhu Y; Zhang K
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15288-96. PubMed ID: 27253880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene supercapacitor with both high power and energy density.
    Yang H; Kannappan S; Pandian AS; Jang JH; Lee YS; Lu W
    Nanotechnology; 2017 Nov; 28(44):445401. PubMed ID: 28854156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor.
    Ma G; Hua F; Sun K; Fenga E; Peng H; Zhang Z; Lei Z
    R Soc Open Sci; 2018 Jan; 5(1):171186. PubMed ID: 29410830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO
    Ghosh K; Yue CY; Sk MM; Jena RK
    ACS Appl Mater Interfaces; 2017 May; 9(18):15350-15363. PubMed ID: 28414212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MoS
    Qin Q; Chen L; Wei T; Liu X
    Small; 2019 Jul; 15(29):e1803639. PubMed ID: 30565838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-active, pyrene-based pristine porous organic polymers for efficient energy storage with exceptional cyclic stability.
    Bandyopadhyay S; Singh C; Jash P; Hussain MW; Paul A; Patra A
    Chem Commun (Camb); 2018 Jun; 54(50):6796-6799. PubMed ID: 29766177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meso-Microporous Carbon Nanofibrous Aerogel Electrode Material with Fluorine-Treated Wood Biochar for High-Performance Supercapacitor.
    Hasan MF; Asare K; Mantripragada S; Charles V; Shahbazi A; Zhang L
    Gels; 2024 Jan; 10(1):. PubMed ID: 38275856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Pot Synthesis of Polyoxometalate Decorated Polyindole for Energy Storage Supercapacitors.
    Vannathan AA; Kella T; Shee D; Mal SS
    ACS Omega; 2021 May; 6(17):11199-11208. PubMed ID: 34056275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co
    Zhang C; Wei J; Chen L; Tang S; Deng M; Du Y
    Nanoscale; 2017 Oct; 9(40):15423-15433. PubMed ID: 28975952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic Design of Polypyrrole/Carbon Fiber Electrodes for Efficient Flexible Fiber-Type Solid-State Supercapacitors.
    Sung YS; Lin LY
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.