BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29333630)

  • 21. Nitrogen Doped Carbons Derived From Graphene Aerogel Templated Triazine-Based Conjugated Microporous Polymers for High-Performance Supercapacitors.
    Peng L; Guo Q; Ai Z; Zhao Y; Liu Y; Wei D
    Front Chem; 2019; 7():142. PubMed ID: 31058127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interfacial growth of free-standing PANI films: toward high-performance all-polymer supercapacitors.
    Zhong F; Ma M; Zhong Z; Lin X; Chen M
    Chem Sci; 2020 Dec; 12(5):1783-1790. PubMed ID: 34163940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A High-Capacity Negative Electrode for Asymmetric Supercapacitors Based on a PMo
    Wang G; Chen T; Gómez-García CJ; Zhang F; Zhang M; Ma H; Pang H; Wang X; Tan L
    Small; 2020 Jul; 16(29):e2001626. PubMed ID: 32548898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.
    Sundriyal P; Bhattacharya S
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes.
    Dubal DP; Chodankar NR; Vinu A; Kim DH; Gomez-Romero P
    ChemSusChem; 2017 Jul; 10(13):2742-2750. PubMed ID: 28523755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. β-Co(OH)
    Ulaganathan M; Maharjan MM; Yan Q; Aravindan V; Madhavi S
    Chem Asian J; 2017 Aug; 12(16):2127-2133. PubMed ID: 28594146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors.
    Li L; Li R; Gai S; Ding S; He F; Zhang M; Yang P
    Chemistry; 2015 May; 21(19):7119-26. PubMed ID: 25801647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications.
    Kumar Y; Ahmad I; Rawat A; Pandey RK; Mohanty P; Pandey R
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11605-11616. PubMed ID: 38407024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Au-assisted polymerization of conductive poly(N-phenylglycine) as high-performance positive electrodes for asymmetric supercapacitors.
    Li M; Luo Y; Jia C; Huang M; Yu M; Luo G; Zhao L; Boukherroub R; Jiang Z
    Nanotechnology; 2021 Nov; 33(4):. PubMed ID: 34416744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode.
    Lai F; Miao YE; Zuo L; Lu H; Huang Y; Liu T
    Small; 2016 Jun; 12(24):3235-44. PubMed ID: 27135301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances.
    Naderi L; Shahrokhian S
    J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile synthesis of strontium ferrite nanorods/graphene composites as advanced electrode materials for supercapacitors.
    Fu M; Zhang Z; Zhu Z; Zhuang Q; Chen W; Yu H; Liu Q
    J Colloid Interface Sci; 2021 Apr; 588():795-803. PubMed ID: 33308852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controllable fabrication of NiV
    Li Y; Sun H; Yang Y; Cao Y; Zhou W; Chai H
    J Colloid Interface Sci; 2020 Nov; 580():298-307. PubMed ID: 32698084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density.
    Zhang Y; Tang Z
    Waste Manag; 2020 Apr; 106():250-260. PubMed ID: 32240941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MOF-Derived Hollow Cage Ni
    Jayakumar A; Antony RP; Wang R; Lee JM
    Small; 2017 Mar; 13(11):. PubMed ID: 28075058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities.
    Li M; Lei W; Yu Y; Yang W; Li J; Chen D; Xu S; Feng M; Li H
    Nanoscale; 2018 Aug; 10(34):15926-15931. PubMed ID: 30113063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CoNi
    Cao X; He J; Li H; Kang L; He X; Sun J; Jiang R; Xu H; Lei Z; Liu ZH
    Small; 2018 Jul; 14(27):e1800998. PubMed ID: 29847710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative Study of the Supercapacitive Performance of Three Ferrocene-Based Structures: Targeted Design of a Conductive Ferrocene-Functionalized Coordination Polymer as a Supercapacitor Electrode.
    Miao Q; Rouhani F; Moghanni-Bavil-Olyaei H; Liu KG; Gao XM; Li JZ; Hu XD; Jin ZM; Hu ML; Morsali A
    Chemistry; 2020 Aug; 26(43):9518-9526. PubMed ID: 32379364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dioxythiophene-based polymer electrodes for supercapacitor modules.
    Liu DY; Reynolds JR
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.