These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants. Lu Y; Wang JY; Pei J Acc Chem Res; 2021 Jul; 54(13):2871-2883. PubMed ID: 34152131 [TBL] [Abstract][Full Text] [Related]
6. Twisted Linker Effect on Naphthalene Diimide-Based Dimer Electron Acceptors for Non-fullerene Organic Solar Cells. Oh JT; Ha YH; Kwon SK; Song S; Kim JY; Kim YH; Choi H Macromol Rapid Commun; 2018 Jul; 39(14):e1800108. PubMed ID: 29688600 [TBL] [Abstract][Full Text] [Related]
7. Doping: A Key Enabler for Organic Transistors. Xu Y; Sun H; Liu A; Zhu HH; Li W; Lin YF; Noh YY Adv Mater; 2018 Nov; 30(46):e1801830. PubMed ID: 30101530 [TBL] [Abstract][Full Text] [Related]
8. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits. Baeg KJ; Kim J; Khim D; Caironi M; Kim DY; You IK; Quinn JR; Facchetti A; Noh YY ACS Appl Mater Interfaces; 2011 Aug; 3(8):3205-14. PubMed ID: 21805991 [TBL] [Abstract][Full Text] [Related]
9. Novel semiconducting quinone for air-stable n-type organic field-effect transistors. Mamada M; Kumaki D; Nishida J; Tokito S; Yamashita Y ACS Appl Mater Interfaces; 2010 May; 2(5):1303-7. PubMed ID: 20397645 [TBL] [Abstract][Full Text] [Related]
10. Controlled charge transport by polymer blend dielectrics in top-gate organic field-effect transistors for low-voltage-operating complementary circuits. Baeg KJ; Khim D; Kim J; Han H; Jung SW; Kim TW; Kang M; Facchetti A; Hong SK; Kim DY; Noh YY ACS Appl Mater Interfaces; 2012 Nov; 4(11):6176-84. PubMed ID: 23046095 [TBL] [Abstract][Full Text] [Related]
11. Tuning orbital energetics in arylene diimide semiconductors. materials design for ambient stability of n-type charge transport. Jones BA; Facchetti A; Wasielewski MR; Marks TJ J Am Chem Soc; 2007 Dec; 129(49):15259-78. PubMed ID: 17999505 [TBL] [Abstract][Full Text] [Related]
12. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Tang CG; Ang MC; Choo KK; Keerthi V; Tan JK; Syafiqah MN; Kugler T; Burroughes JH; Png RQ; Chua LL; Ho PK Nature; 2016 Nov; 539(7630):536-540. PubMed ID: 27882976 [TBL] [Abstract][Full Text] [Related]
13. Spontaneous Doping at the Polymer-Polymer Interface for High-Performance Organic Transistors. Shin ES; Park WT; Kwon YW; Xu Y; Noh YY ACS Appl Mater Interfaces; 2019 Apr; 11(13):12709-12716. PubMed ID: 30848119 [TBL] [Abstract][Full Text] [Related]
14. N-Type Doping of Naphthalenediimide-Based Random Donor-Acceptor Copolymers to Enhance Transistor Performance and Structural Crystallinity. Chang Y; Wu YS; Tung SH; Chen WC; Chueh CC; Liu CL ACS Appl Mater Interfaces; 2023 Mar; 15(12):15745-15757. PubMed ID: 36920493 [TBL] [Abstract][Full Text] [Related]
15. Highly Stable Contact Doping in Organic Field Effect Transistors by Dopant-Blockade Method. Kim Y; Broch K; Lee W; Ahn H; Lee J; Yoo D; Kim J; Chung S; Sirringhaus H; Kang K; Lee T Adv Funct Mater; 2020 Jul; 30(28):2000058. PubMed ID: 32684904 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Performance of Organic Field-Effect Transistors by a Molecular Dopant with High Electron Affinity. Lu W; Cao J; Zhai C; Bu L; Lu G; Zhu Y ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35548972 [TBL] [Abstract][Full Text] [Related]
18. A simple and robust approach to reducing contact resistance in organic transistors. Lamport ZA; Barth KJ; Lee H; Gann E; Engmann S; Chen H; Guthold M; McCulloch I; Anthony JE; Richter LJ; DeLongchamp DM; Jurchescu OD Nat Commun; 2018 Dec; 9(1):5130. PubMed ID: 30510263 [TBL] [Abstract][Full Text] [Related]