BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 29333676)

  • 1. Ether-à-go-go K
    Bauer CK; Schwarz JR
    J Physiol; 2018 Mar; 596(5):769-783. PubMed ID: 29333676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.
    Kazmierczak M; Zhang X; Chen B; Mulkey DK; Shi Y; Wagner PG; Pivaroff-Ward K; Sassic JK; Bayliss DA; Jegla T
    J Gen Physiol; 2013 Jun; 141(6):721-35. PubMed ID: 23712551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The functional properties of the human ether-à-go-go-like (HELK2) K+ channel.
    Becchetti A; De Fusco M; Crociani O; Cherubini A; Restano-Cassulini R; Lecchi M; Masi A; Arcangeli A; Casari G; Wanke E
    Eur J Neurosci; 2002 Aug; 16(3):415-28. PubMed ID: 12193184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The eag family of K+ channels in Drosophila and mammals.
    Ganetzky B; Robertson GA; Wilson GF; Trudeau MC; Titus SA
    Ann N Y Acad Sci; 1999 Apr; 868():356-69. PubMed ID: 10414305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain.
    Saganich MJ; Machado E; Rudy B
    J Neurosci; 2001 Jul; 21(13):4609-24. PubMed ID: 11425889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor.
    Li X; Martinson AS; Layden MJ; Diatta FH; Sberna AP; Simmons DK; Martindale MQ; Jegla TJ
    J Exp Biol; 2015 Feb; 218(Pt 4):526-36. PubMed ID: 25696816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorpromazine binding to the PAS domains uncovers the effect of ligand modulation on EAG channel activity.
    Wang ZJ; Soohoo SM; Tiwari PB; Piszczek G; Brelidze TI
    J Biol Chem; 2020 Mar; 295(13):4114-4123. PubMed ID: 32047112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of a mouse brain Elk-type K+ channel.
    Trudeau MC; Titus SA; Branchaw JL; Ganetzky B; Robertson GA
    J Neurosci; 1999 Apr; 19(8):2906-18. PubMed ID: 10191308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ether-à-go-go-related gene K+ channels contribute to threshold excitability of mouse auditory brainstem neurons.
    Hardman RM; Forsythe ID
    J Physiol; 2009 Jun; 587(Pt 11):2487-97. PubMed ID: 19359372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The subfamily-specific assembly of Eag and Erg K+ channels is determined by both the amino and the carboxyl recognition domains.
    Lin TF; Lin IW; Chen SC; Wu HH; Yang CS; Fang HY; Chiu MM; Jeng CJ
    J Biol Chem; 2014 Aug; 289(33):22815-22834. PubMed ID: 25008323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structural mechanism of KCNH-channel regulation by the eag domain.
    Haitin Y; Carlson AE; Zagotta WN
    Nature; 2013 Sep; 501(7467):444-8. PubMed ID: 23975098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of hERG and hEAG channels by Src and by SHP-1 tyrosine phosphatase via an ITIM region in the cyclic nucleotide binding domain.
    Schlichter LC; Jiang J; Wang J; Newell EW; Tsui FW; Lam D
    PLoS One; 2014; 9(2):e90024. PubMed ID: 24587194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Eag domain regulates the voltage-dependent inactivation of rat Eag1 K+ channels.
    Lin TF; Jow GM; Fang HY; Fu SJ; Wu HH; Chiu MM; Jeng CJ
    PLoS One; 2014; 9(10):e110423. PubMed ID: 25333352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of S5P alpha-helix charge mutants on inactivation of hERG K+ channels.
    Clarke CE; Hill AP; Zhao J; Kondo M; Subbiah RN; Campbell TJ; Vandenberg JI
    J Physiol; 2006 Jun; 573(Pt 2):291-304. PubMed ID: 16556651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ginsenoside Rg3, a Gating Modifier of EAG Family K+ Channels.
    Wu W; Gardner A; Sachse FB; Sanguinetti MC
    Mol Pharmacol; 2016 Oct; 90(4):469-82. PubMed ID: 27502018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Eag by Ca
    Bronk P; Kuklin EA; Gorur-Shandilya S; Liu C; Wiggin TD; Reed ML; Marder E; Griffith LC
    J Neurophysiol; 2018 May; 119(5):1665-1680. PubMed ID: 29364071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Ether-à-Go-Go Related Gene (ERG) Current Governs Intrinsic Persistent Activity in Rodent Neocortical Pyramidal Cells.
    Cui ED; Strowbridge BW
    J Neurosci; 2018 Jan; 38(2):423-440. PubMed ID: 29175952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of undecylenic acid as EAG channel inhibitor using surface plasmon resonance-based screen of KCNH channels.
    Wang ZJ; Tiwari PB; Üren A; Brelidze TI
    BMC Pharmacol Toxicol; 2019 Jul; 20(1):42. PubMed ID: 31315662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the carboxy-terminal region of a KCNH channel.
    Brelidze TI; Carlson AE; Sankaran B; Zagotta WN
    Nature; 2012 Jan; 481(7382):530-3. PubMed ID: 22230959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium currents expressed from Drosophila and mouse eag cDNAs in Xenopus oocytes.
    Robertson GA; Warmke JM; Ganetzky B
    Neuropharmacology; 1996; 35(7):841-50. PubMed ID: 8938715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.