These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2933409)

  • 1. Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta--I. Caged ball valves.
    Chandran KB; Khalighi B; Chen CJ
    J Biomech; 1985; 18(10):763-72. PubMed ID: 2933409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady flow development past valve prostheses in a model human aorta. I. Centrally occluding valves.
    Khalighi B; Chandran KB; Chen CJ
    J Biomech; 1983; 16(12):1003-11. PubMed ID: 6671983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of physiological pulsatile flow past valve prosthesis in a model of human aorta--II. Tilting disc valves and the effect of orientation.
    Chandran KB; Khalighi B; Chen CJ
    J Biomech; 1985; 18(10):773-80. PubMed ID: 4066720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser anemometry measurements of pulsatile flow past aortic valve prostheses.
    Chandran KB; Cabell GN; Khalighi B; Chen CJ
    J Biomech; 1983; 16(10):865-73. PubMed ID: 6643525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of valve orientation on flow development past aortic valve prostheses in a model human aorta.
    Chandran KB; Khalighi B; Chen CJ; Falsetti HL; Yearwood TL; Hiratzka LF
    J Thorac Cardiovasc Surg; 1983 Jun; 85(6):893-901. PubMed ID: 6855259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsatile flow past aortic valve bioprostheses in a model human aorta.
    Chandran KB; Cabell GN; Khalighi B; Chen CJ
    J Biomech; 1984; 17(8):609-19. PubMed ID: 6490673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady flow development past valve prostheses in a model human aorta. II. Tilting disc valves.
    Khalighi B; Chandran KB; Chen CJ
    J Biomech; 1983; 16(12):1013-8. PubMed ID: 6671984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro flow dynamics of four prosthetic aortic valves: a comparative analysis.
    Hanle DD; Harrison EC; Yoganathan AP; Allen DT; Corcoran WH
    J Biomech; 1989; 22(6-7):597-607. PubMed ID: 2808443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity and turbulence measurements past mitral valve prostheses in a model left ventricle.
    Schoephoerster RT; Chandran KB
    J Biomech; 1991; 24(7):549-62. PubMed ID: 1880139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro.
    Nygaard H; Giersiepen M; Hasenkam JM; Reul H; Paulsen PK; Rovsing PE; Westphal D
    J Biomech; 1992 Apr; 25(4):429-40. PubMed ID: 1583021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of the hemodynamic performance of bileaflet mechanical heart valves at different implantation angles.
    Kuan YH; Nguyen VT; Kabinejadian F; Su B; Kim S; Yoganathan AP; Leo HL
    J Heart Valve Dis; 2014 Sep; 23(5):642-50. PubMed ID: 25799715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity distribution along an elastic model of human arterial tree.
    Rieu R; Friggi A; Pelissier R
    J Biomech; 1985; 18(9):703-15. PubMed ID: 2934394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of prosthetic aortic valve performance by magnetic resonance velocity imaging.
    Botnar R; Nagel E; Scheidegger MB; Pedersen EM; Hess O; Boesiger P
    MAGMA; 2000 Feb; 10(1):18-26. PubMed ID: 10697222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results.
    King MJ; Corden J; David T; Fisher J
    J Biomech; 1996 May; 29(5):609-18. PubMed ID: 8707787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional visualization of velocity profiles in the ascending aorta in humans. A comparative study among normal aortic valves, St. Jude Medical and Starr-Edwards Silastic Ball valves.
    Paulsen PK; Hasenkam JM; Stødkilde-Jørgensen H; Albrechtsen O
    Int J Artif Organs; 1988 Jul; 11(4):277-92. PubMed ID: 2970440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta.
    Borazjani I; Ge L; Sotiropoulos F
    Ann Biomed Eng; 2010 Feb; 38(2):326-44. PubMed ID: 19806458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro comparative study of St. Jude Medical and Edwards-Duromedics bileaflet valves using laser anemometry.
    Fatemi R; Chandran KB
    J Biomech Eng; 1989 Nov; 111(4):298-302. PubMed ID: 2486368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prosthetic heart valve evaluation by magnetic resonance imaging.
    Hasenkam JM; Ringgaard S; Houlind K; Botnar RM; Stødkilde-Jørgensen H; Boesiger P; Pedersen EM
    Eur J Cardiothorac Surg; 1999 Sep; 16(3):300-5. PubMed ID: 10554848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity profiles in the wake of two prosthetic heart valves using a new cardiovascular simulator.
    Farahifar D; Cassot F; Bodard H; Pelissier R
    J Biomech; 1985; 18(10):789-802. PubMed ID: 2933410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser anemometry measurements of steady flow past aortic valve prostheses.
    Chew YT; Low HT; Lee CN; Kwa SS
    J Biomech Eng; 1993 Aug; 115(3):290-8. PubMed ID: 8231145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.