BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29334217)

  • 1. Characterization of an Hsp90-Independent Interaction between Co-Chaperone p23 and Transcription Factor p53.
    Wu H; Hyun J; Martinez-Yamout MA; Park SJ; Dyson HJ
    Biochemistry; 2018 Feb; 57(6):935-944. PubMed ID: 29334217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation of zinc-free p53 is inhibited by Hsp90 but not other chaperones.
    Wu H; Dyson HJ
    Protein Sci; 2019 Nov; 28(11):2020-2023. PubMed ID: 31503385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of sites of interaction between p23 and Hsp90 in solution.
    Martinez-Yamout MA; Venkitakrishnan RP; Preece NE; Kroon G; Wright PE; Dyson HJ
    J Biol Chem; 2006 May; 281(20):14457-64. PubMed ID: 16565516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90.
    Chadli A; Bouhouche I; Sullivan W; Stensgard B; McMahon N; Catelli MG; Toft DO
    Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12524-9. PubMed ID: 11050175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53.
    Hagn F; Lagleder S; Retzlaff M; Rohrberg J; Demmer O; Richter K; Buchner J; Kessler H
    Nat Struct Mol Biol; 2011 Sep; 18(10):1086-93. PubMed ID: 21892170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unstructured C-terminal region of the Hsp90 co-chaperone p23 is important for its chaperone function.
    Weikl T; Abelmann K; Buchner J
    J Mol Biol; 1999 Oct; 293(3):685-91. PubMed ID: 10543959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of Hsp90-p23-GR reveals the Hsp90 client-remodelling mechanism.
    Noddings CM; Wang RY; Johnson JL; Agard DA
    Nature; 2022 Jan; 601(7893):465-469. PubMed ID: 34937936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defective glucocorticoid receptor signaling and keratinocyte-autonomous defects contribute to skin phenotype of mouse embryos lacking the Hsp90 co-chaperone p23.
    Madon-Simon M; Grad I; Bayo P; Pérez P; Picard D
    PLoS One; 2017; 12(6):e0180035. PubMed ID: 28650975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23.
    Karagöz GE; Duarte AM; Ippel H; Uetrecht C; Sinnige T; van Rosmalen M; Hausmann J; Heck AJ; Boelens R; Rüdiger SG
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):580-5. PubMed ID: 21183720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins.
    McLaughlin SH; Sobott F; Yao ZP; Zhang W; Nielsen PR; Grossmann JG; Laue ED; Robinson CV; Jackson SE
    J Mol Biol; 2006 Feb; 356(3):746-58. PubMed ID: 16403413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The client protein p53 adopts a molten globule-like state in the presence of Hsp90.
    Park SJ; Borin BN; Martinez-Yamout MA; Dyson HJ
    Nat Struct Mol Biol; 2011 May; 18(5):537-41. PubMed ID: 21460846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Interaction of Hsp90 with Its Client Protein p53.
    Park SJ; Kostic M; Dyson HJ
    J Mol Biol; 2011 Aug; 411(1):158-73. PubMed ID: 21658391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp70 molecular chaperones are required to support p53 tumor suppressor activity under stress conditions.
    Walerych D; Olszewski MB; Gutkowska M; Helwak A; Zylicz M; Zylicz A
    Oncogene; 2009 Dec; 28(48):4284-94. PubMed ID: 19749793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hsp90 oligomerization process: How can p23 drive the chaperone machineries?
    Lepvrier E; Nigen M; Moullintraffort L; Chat S; Allegro D; Barbier P; Thomas D; Nazabal A; Garnier C
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1412-24. PubMed ID: 26151834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hsp90 co-chaperone p23 of Toxoplasma gondii: Identification, functional analysis and dynamic interactome determination.
    Echeverria PC; Figueras MJ; Vogler M; Kriehuber T; de Miguel N; Deng B; Dalmasso MC; Matthews DE; Matrajt M; Haslbeck M; Buchner J; Angel SO
    Mol Biochem Parasitol; 2010 Aug; 172(2):129-40. PubMed ID: 20403389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70.
    Carrello A; Allan RK; Morgan SL; Owen BA; Mok D; Ward BK; Minchin RF; Toft DO; Ratajczak T
    Cell Stress Chaperones; 2004; 9(2):167-81. PubMed ID: 15497503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the middle domains stabilizes Hsp90α dimer in a closed conformation with high affinity for p23.
    Synoradzki K; Miszta P; Kazlauskas E; Mickevičiūtė A; Michailovienė V; Matulis D; Filipek S; Bieganowski P
    Biol Chem; 2018 Mar; 399(4):337-345. PubMed ID: 29337688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nox5 stability and superoxide production is regulated by C-terminal binding of Hsp90 and CO-chaperones.
    Chen F; Haigh S; Yu Y; Benson T; Wang Y; Li X; Dou H; Bagi Z; Verin AD; Stepp DW; Csanyi G; Chadli A; Weintraub NL; Smith SM; Fulton DJ
    Free Radic Biol Med; 2015 Dec; 89():793-805. PubMed ID: 26456056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53.
    King FW; Wawrzynow A; Höhfeld J; Zylicz M
    EMBO J; 2001 Nov; 20(22):6297-305. PubMed ID: 11707401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies of the low-resolution structure of two p23 co-chaperones for Hsp90 identified in Plasmodium falciparum genome.
    Silva NSM; Seraphim TV; Minari K; Barbosa LRS; Borges JC
    Int J Biol Macromol; 2018 Mar; 108():193-204. PubMed ID: 29191421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.