These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 29334396)
21. Controlled synthesis of Pt nanoparticles via seeding growth and their shape-dependent catalytic activity. Gong X; Yang Y; Zhang L; Zou C; Cai P; Chen G; Huang S J Colloid Interface Sci; 2010 Dec; 352(2):379-85. PubMed ID: 20851403 [TBL] [Abstract][Full Text] [Related]
22. Promoter Effect of Pt on Zr Catalysts to Increase the Conversion of Furfural to γ-Valerolactone Using Batch and Continuous Flow Reactors: Influence of the Way of the Incorporation of the Pt Sites. García A; Saotta A; Miguel PJ; Sánchez-Tovar R; Fornasari G; Allegri A; Torres-Olea B; Cecilia JA; Albonetti S; Dimitratos N; Solsona B Energy Fuels; 2024 Jun; 38(11):9849-9861. PubMed ID: 38863684 [TBL] [Abstract][Full Text] [Related]
23. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts. Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263 [TBL] [Abstract][Full Text] [Related]
24. Facile Fabrication of Well-Dispersed Pt Nanoparticles in Mesoporous Silica with Large Open Spaces and Their Catalytic Applications. Liu X; Chen D; Chen L; Jin R; Xing S; Xing H; Xing Y; Su Z Chemistry; 2016 Jun; 22(27):9293-8. PubMed ID: 27245766 [TBL] [Abstract][Full Text] [Related]
25. Cobalt nanoparticles supported on N-doped mesoporous carbon as a highly efficient catalyst for the synthesis of aromatic amines. Cui X; Liang K; Tian M; Zhu Y; Ma J; Dong Z J Colloid Interface Sci; 2017 Sep; 501():231-240. PubMed ID: 28456107 [TBL] [Abstract][Full Text] [Related]
26. Palladium nanoparticles embedded in mesoporous carbons as efficient, green and reusable catalysts for mild hydrogenations of nitroarenes. Enneiymy M; Fioux P; Le Drian C; Matei Ghimbeu C; Becht JM RSC Adv; 2020 Oct; 10(60):36741-36750. PubMed ID: 35517931 [TBL] [Abstract][Full Text] [Related]
27. Interface-Confined FeO Xu X; Fu Q; Gan L; Zhu J; Bao X J Phys Chem B; 2018 Jan; 122(2):984-990. PubMed ID: 28914538 [TBL] [Abstract][Full Text] [Related]
28. In situ assembly of well-dispersed Ni nanoparticles on silica nanotubes and excellent catalytic activity in 4-nitrophenol reduction. Zhang S; Gai S; He F; Ding S; Li L; Yang P Nanoscale; 2014 Oct; 6(19):11181-8. PubMed ID: 25122589 [TBL] [Abstract][Full Text] [Related]
29. Activity-structure correlation of Pt/Ru catalysts for the electrodecomposition of methanol: the importance of RuO(2) and PtRu alloying. Wei YC; Liu CW; Wang KW Chemphyschem; 2009 Jun; 10(8):1230-7. PubMed ID: 19396843 [TBL] [Abstract][Full Text] [Related]
30. Interface-confined oxide nanostructures for catalytic oxidation reactions. Fu Q; Yang F; Bao X Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033 [TBL] [Abstract][Full Text] [Related]
31. Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. An K; Alayoglu S; Musselwhite N; Plamthottam S; Melaet G; Lindeman AE; Somorjai GA J Am Chem Soc; 2013 Nov; 135(44):16689-96. PubMed ID: 24090187 [TBL] [Abstract][Full Text] [Related]
32. Mesoporous Pt-SiO2 and Pt-SiO2-Ta2O5 catalysts prepared using Pt colloids as templates. Pârvulescu VI; Pârvulescu V; Endruschat U; Granger P; Richards R Chemphyschem; 2007 Apr; 8(5):666-78. PubMed ID: 17328010 [TBL] [Abstract][Full Text] [Related]
33. Surface properties of Ni-Pt/SiO2 catalysts for N2O decomposition and reduction by H2. Arenas-Alatorre J; Gómez-Cortés A; Avalos-Borja M; Díaz G J Phys Chem B; 2005 Feb; 109(6):2371-6. PubMed ID: 16851231 [TBL] [Abstract][Full Text] [Related]
34. Photo-induced microfluidic production of ultrasmall platinum nanoparticles. Marelli M; Perez Schmidt P; Nguyen XT; Pitzalis E; Poggini L; Ragona L; Pagano K; Aronica LA; Polito L; Evangelisti C Nanoscale; 2024 Oct; 16(42):19669-19674. PubMed ID: 39385674 [TBL] [Abstract][Full Text] [Related]
35. Delivery of Highly Active Noble-Metal Nanoparticles into Microspherical Supports by an Aerosol-Spray Method. Kan E; Kuai L; Wang W; Geng B Chemistry; 2015 Sep; 21(38):13291-6. PubMed ID: 26234910 [TBL] [Abstract][Full Text] [Related]
36. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
37. Effects of surface activation on the structural and catalytic properties of ruthenium nanoparticles supported on mesoporous silica. Ma X; Lin R; Beuerle C; Jackson JE; Obare SO; Ofoli RY Nanotechnology; 2014 Jan; 25(4):045701. PubMed ID: 24394435 [TBL] [Abstract][Full Text] [Related]
38. Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. Bock C; Paquet C; Couillard M; Botton GA; MacDougall BR J Am Chem Soc; 2004 Jun; 126(25):8028-37. PubMed ID: 15212553 [TBL] [Abstract][Full Text] [Related]
39. Transformation of carbon-supported Pt-Ni octahedral electrocatalysts into cubes: toward stable electrocatalysis. Shviro M; Gocyla M; Schierholz R; Tempel H; Kungl H; Eichel RA; Dunin-Borkowski RE Nanoscale; 2018 Dec; 10(45):21353-21362. PubMed ID: 30426121 [TBL] [Abstract][Full Text] [Related]
40. Conversion of Glycerol to Value Added Products in a Semi-Continuous Batch Reactor Using Noble Metals Supported on ZSM-11 Zeolite. Diguilio E; Renzini MS; Pierella LB; Domine ME Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33671418 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]