These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29334429)

  • 1. Superhydrophobic/Superhydrophilic Janus Fabrics Reducing Blood Loss.
    Zhu T; Wu J; Zhao N; Cai C; Qian Z; Si F; Luo H; Guo J; Lai X; Shao L; Xu J
    Adv Healthc Mater; 2018 Apr; 7(7):e1701086. PubMed ID: 29334429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric Superhydrophobic/Superhydrophilic Cotton Fabrics Designed by Spraying Polymer and Nanoparticles.
    Sasaki K; Tenjimbayashi M; Manabe K; Shiratori S
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):651-9. PubMed ID: 26595458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.
    Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA
    Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Randomly heterogeneous oleophobic/pH-responsive polymer coatings with reversible wettability transition for multifunctional fabrics and controllable oil-water separation.
    Chi H; Xu Z; Zhang T; Li X; Wu Z; Zhao Y
    J Colloid Interface Sci; 2021 Jul; 594():122-130. PubMed ID: 33756360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superhydrophilic-Superhydrophobic Multifunctional Janus Foam Fabrication Using a Spatially Shaped Femtosecond Laser for Fog Collection and Detection.
    Li C; Jiang L; Hu J; Xu C; Li Z; Liu W; Zhao X; Zhao B
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9873-9881. PubMed ID: 35142217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sponges with Janus Character from Nanocellulose: Preparation and Applications in the Treatment of Hemorrhagic Wounds.
    Cheng H; Xiao D; Tang Y; Wang B; Feng X; Lu M; Vancso GJ; Sui X
    Adv Healthc Mater; 2020 Sep; 9(17):e1901796. PubMed ID: 32691995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel reversibly switchable wettability of superhydrophobic-superhydrophilic surfaces induced by charge injection and heating.
    Ye X; Hou J; Cai D
    Beilstein J Nanotechnol; 2019; 10():840-847. PubMed ID: 31019871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional sweat transport of monolayered cotton-fabrics fabricated through femtosecond-laser induced hydrophilization for personal moisture and thermal management.
    Xu B; Ding Y; Ni J; Zhang Y; Li C; Wu S; Wu D; Zhu Q
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):417-425. PubMed ID: 35932678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated device based on cauliflower-like nickel hydroxide particles-coated fabrics with inverse wettability for highly efficient oil/hot alkaline water separation.
    Wang J; Wang H
    J Colloid Interface Sci; 2019 Jan; 534():228-238. PubMed ID: 30227379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wettability control of ZnO nanoparticles for universal applications.
    Lee M; Kwak G; Yong K
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps.
    Wang Y; Wang X; Lai C; Hu H; Kong Y; Fei B; Xin JH
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):2950-60. PubMed ID: 26652924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Polypropylene Fabrics Super-Repelling Various Liquids: A Simple, Rapid and Scalable Fabrication Method by Solvent Swelling.
    Zhu T; Cai C; Duan C; Zhai S; Liang S; Jin Y; Zhao N; Xu J
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13996-4003. PubMed ID: 26061028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Floatable superhydrophobic Ag
    Jiang W; Fu H; Zhu Y; Yue H; Yuan S; Liang B
    Nanoscale; 2018 Jul; 10(28):13661-13672. PubMed ID: 29985501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces.
    Chang JH; Hunter IW
    Macromol Rapid Commun; 2011 May; 32(9-10):718-23. PubMed ID: 21544891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cotton fabrics with single-faced superhydrophobicity.
    Liu Y; Xin JH; Choi CH
    Langmuir; 2012 Dec; 28(50):17426-34. PubMed ID: 23186211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest.
    Yang X; Song J; Liu J; Liu X; Jin Z
    Sci Rep; 2017 Aug; 7(1):8816. PubMed ID: 28821794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces.
    Lv LB; Cui TL; Zhang B; Wang HH; Li XH; Chen JS
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15165-9. PubMed ID: 26440454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unidirectional water transfer effect from fabrics having a superhydrophobic-to-hydrophilic gradient.
    Wang H; Wang X; Lin T
    J Nanosci Nanotechnol; 2013 Feb; 13(2):839-42. PubMed ID: 23646526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart Superhydrophobic Textiles Utilizing a Long-Range Antenna Sensor for Hazardous Aqueous Droplet Detection plus Prevention.
    Kazemi KK; Zarifi T; Mohseni M; Narang R; Golovin K; Zarifi MH
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34877-34888. PubMed ID: 34254781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-Impact Behavior of a Droplet Impacting on a Permeable Metal Mesh with a Sharp Wettability Step.
    Sen U; Roy T; Chatterjee S; Ganguly R; Megaridis CM
    Langmuir; 2019 Oct; 35(39):12711-12721. PubMed ID: 31499000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.