BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 29334455)

  • 41. A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli.
    Neumann M; Mittelstädt G; Iobbi-Nivol C; Saggu M; Lendzian F; Hildebrandt P; Leimkühler S
    FEBS J; 2009 May; 276(10):2762-74. PubMed ID: 19368556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins.
    Ilbert M; Méjean V; Iobbi-Nivol C
    Microbiology (Reading); 2004 Apr; 150(Pt 4):935-943. PubMed ID: 15073303
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Serine 121 is an essential amino acid for biotin sulfoxide reductase functionality.
    Pollock VV; Barber MJ
    J Biol Chem; 2000 Nov; 275(45):35086-90. PubMed ID: 10948204
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trimethylamine oxidation in liver tissue is not catalyzed by a molybdenum cofactor-dependent enzyme.
    Johnson JL
    Biofactors; 1988 Jul; 1(2):153-5. PubMed ID: 3255351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biochemical characterization of molybdenum cofactor-free nitrate reductase from Neurospora crassa.
    Ringel P; Krausze J; van den Heuvel J; Curth U; Pierik AJ; Herzog S; Mendel RR; Kruse T
    J Biol Chem; 2013 May; 288(20):14657-14671. PubMed ID: 23539622
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biogenesis of molybdenum cofactors.
    Hinton SM; Dean D
    Crit Rev Microbiol; 1990; 17(3):169-88. PubMed ID: 2405878
    [No Abstract]   [Full Text] [Related]  

  • 47. Function of MoaB proteins in the biosynthesis of the molybdenum and tungsten cofactors.
    Bevers LE; Hagedoorn PL; Santamaria-Araujo JA; Magalon A; Hagen WR; Schwarz G
    Biochemistry; 2008 Jan; 47(3):949-56. PubMed ID: 18154309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterisation of the mob locus of Rhodobacter sphaeroides WS8: mobA is the only gene required for molybdopterin guanine dinucleotide synthesis.
    Buchanan G; Kuper J; Mendel RR; Schwarz G; Palmer T
    Arch Microbiol; 2001 Jul; 176(1-2):62-8. PubMed ID: 11479704
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The biosynthesis of the molybdenum cofactors.
    Mendel RR; Leimkühler S
    J Biol Inorg Chem; 2015 Mar; 20(2):337-47. PubMed ID: 24980677
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Further characterization of trimethylamine N-oxide reductase from Escherichia coli, a molybdoprotein.
    Yamamoto I; Okubo N; Ishimoto M
    J Biochem; 1986 Jun; 99(6):1773-9. PubMed ID: 3528139
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of a molybdenum cofactor biosynthetic gene cluster in Rhodobacter capsulatus which is specific for the biogenesis of dimethylsulfoxide reductase.
    Solomon PS; Shaw AL; Lane I; Hanson GR; Palmer T; McEwan AG
    Microbiology (Reading); 1999 Jun; 145 ( Pt 6)():1421-1429. PubMed ID: 10411269
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molybdenum cofactor requirement for in vitro activation of apo-molybdoenzymes of Escherichia coli.
    Giordano G; Boxer DH; Pommier J
    Mol Microbiol; 1990 Apr; 4(4):645-50. PubMed ID: 2141097
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family.
    Bray RC; Adams B; Smith AT; Bennett B; Bailey S
    Biochemistry; 2000 Sep; 39(37):11258-69. PubMed ID: 10985771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Specific inhibition of the translocation of a subset of Escherichia coli TAT substrates by the TorA signal peptide.
    Chanal A; Santini CL; Wu LF
    J Mol Biol; 2003 Mar; 327(3):563-70. PubMed ID: 12634052
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC.
    Tejada-Jimenez M; Chamizo-Ampudia A; Calatrava V; Galvan A; Fernandez E; Llamas A
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30545001
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TusA (YhhP) and IscS are required for molybdenum cofactor-dependent base-analog detoxification.
    Kozmin SG; Stepchenkova EI; Schaaper RM
    Microbiologyopen; 2013 Oct; 2(5):743-55. PubMed ID: 23894086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli.
    Hasona A; Ray RM; Shanmugam KT
    J Bacteriol; 1998 Mar; 180(6):1466-72. PubMed ID: 9515915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli.
    Blasco F; Dos Santos JP; Magalon A; Frixon C; Guigliarelli B; Santini CL; Giordano G
    Mol Microbiol; 1998 May; 28(3):435-47. PubMed ID: 9632249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation, cloning, sequence analysis and X-ray structure of dimethyl sulfoxide/trimethylamine N-oxide reductase from Rhodobacter capsulatus.
    Knäblein J; Dobbek H; Ehlert S; Schneider F
    Biol Chem; 1997; 378(3-4):293-302. PubMed ID: 9165084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.