These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 29334455)

  • 81. Identification of the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans as bis(molybdopterin guanine dinucleotide)molybdenum.
    Hilton JC; Rajagopalan KV
    Arch Biochem Biophys; 1996 Jan; 325(1):139-43. PubMed ID: 8554338
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Role of XDHC in Molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus.
    Leimkühler S; Klipp W
    J Bacteriol; 1999 May; 181(9):2745-51. PubMed ID: 10217763
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli.
    Takagi M; Tsuchiya T; Ishimoto M
    J Bacteriol; 1981 Dec; 148(3):762-8. PubMed ID: 7031034
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Molybdopterin--problems and perspectives.
    Rajagopalan KV
    Biofactors; 1988 Dec; 1(4):273-8. PubMed ID: 3076443
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Biochemical, stabilization and crystallization studies on a molecular chaperone (PaoD) involved in the maturation of molybdoenzymes.
    Otrelo-Cardoso AR; Schwuchow V; Rodrigues D; Cabrita EJ; Leimkühler S; Romão MJ; Santos-Silva T
    PLoS One; 2014; 9(1):e87295. PubMed ID: 24498065
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Molybdenum cofactors, enzymes and pathways.
    Schwarz G; Mendel RR; Ribbe MW
    Nature; 2009 Aug; 460(7257):839-47. PubMed ID: 19675644
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Insights into the Cnx1E catalyzed MPT-AMP hydrolysis.
    Hercher TW; Krausze J; Hoffmeister S; Zwerschke D; Lindel T; Blankenfeldt W; Mendel RR; Kruse T
    Biosci Rep; 2020 Jan; 40(1):. PubMed ID: 31860061
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Biosynthesis and processing of the molybdenum cofactors.
    Rajagopalan KV
    Biochem Soc Trans; 1997 Aug; 25(3):757-61. PubMed ID: 9388540
    [No Abstract]   [Full Text] [Related]  

  • 89. Molybdopterin biosynthesis in man. Properties of the converting factor in liver tissue from a molybdenum cofactor deficient patient.
    Johnson JL; Rajagopalan KV
    Adv Exp Med Biol; 1993; 338():379-82. PubMed ID: 8304142
    [No Abstract]   [Full Text] [Related]  

  • 90. Metal-Containing Formate Dehydrogenases, a Personal View.
    Leimkühler S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513211
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Biotin sulfoxide reductase: Tryptophan 90 is required for efficient substrate utilization.
    Pollock VV; Conover RC; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2003 Jan; 409(2):315-26. PubMed ID: 12504898
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Specific incorporation of molybdopterin in xanthine dehydrogenase of Pseudomonas aeruginosa.
    Joshi MS; Rajagopalan KV
    Arch Biochem Biophys; 1994 Feb; 308(2):331-4. PubMed ID: 8109962
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Effect of molybdate and tungstate on the biosynthesis of CO dehydrogenase and the molybdopterin cytosine-dinucleotide-type of molybdenum cofactor in Hydrogenophaga pseudoflava.
    Hänzelmann P; Meyer O
    Eur J Biochem; 1998 Aug; 255(3):755-65. PubMed ID: 9738918
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The pterin molybdenum cofactors.
    Rajagopalan KV; Johnson JL
    J Biol Chem; 1992 May; 267(15):10199-202. PubMed ID: 1587808
    [No Abstract]   [Full Text] [Related]  

  • 95. Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli.
    Gon S; Giudici-Orticoni MT; Méjean V; Iobbi-Nivol C
    J Biol Chem; 2001 Apr; 276(15):11545-51. PubMed ID: 11056172
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli.
    Zupok A; Gorka M; Siemiatkowska B; Skirycz A; Leimkühler S
    J Bacteriol; 2019 Sep; 201(17):. PubMed ID: 31235512
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism.
    Regulski EE; Moy RH; Weinberg Z; Barrick JE; Yao Z; Ruzzo WL; Breaker RR
    Mol Microbiol; 2008 May; 68(4):918-32. PubMed ID: 18363797
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Vibrational Probes of Molybdenum Cofactor-Protein Interactions in Xanthine Dehydrogenase.
    Dong C; Yang J; Reschke S; Leimkühler S; Kirk ML
    Inorg Chem; 2017 Jun; 56(12):6830-6837. PubMed ID: 28590138
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The molybdenum cofactor enzyme mARC: Moonlighting or promiscuous enzyme?
    Llamas A; Chamizo-Ampudia A; Tejada-Jimenez M; Galvan A; Fernandez E
    Biofactors; 2017 Jul; 43(4):486-494. PubMed ID: 28497908
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Characterization of genes encoding dimethyl sulfoxide reductase of Rhodobacter sphaeroides 2.4.1T: an essential metabolic gene function encoded on chromosome II.
    Mouncey NJ; Choudhary M; Kaplan S
    J Bacteriol; 1997 Dec; 179(24):7617-24. PubMed ID: 9401017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.