These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
670 related articles for article (PubMed ID: 29334476)
1. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State. Wang X; Glawe DA; Kramer E; Weller D; Okubara PA Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476 [TBL] [Abstract][Full Text] [Related]
2. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Parafati L; Vitale A; Restuccia C; Cirvilleri G Food Microbiol; 2015 May; 47():85-92. PubMed ID: 25583341 [TBL] [Abstract][Full Text] [Related]
3. Stability and fitness of pyraclostrobin- and boscalid-resistant phenotypes in field isolates of Botrytis cinerea from apple. Kim YK; Xiao CL Phytopathology; 2011 Nov; 101(11):1385-91. PubMed ID: 21692646 [TBL] [Abstract][Full Text] [Related]
4. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. Oro L; Feliziani E; Ciani M; Romanazzi G; Comitini F Int J Food Microbiol; 2018 Jan; 265():18-22. PubMed ID: 29107842 [TBL] [Abstract][Full Text] [Related]
5. Biocontrol of Non- Agarbati A; Canonico L; Pecci T; Romanazzi G; Ciani M; Comitini F Microorganisms; 2022 Jan; 10(2):. PubMed ID: 35208653 [TBL] [Abstract][Full Text] [Related]
6. Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Ruiz-Moyano S; Martín A; Villalobos MC; Calle A; Serradilla MJ; Córdoba MG; Hernández A Food Microbiol; 2016 Aug; 57():45-53. PubMed ID: 27052701 [TBL] [Abstract][Full Text] [Related]
7. Identification and evaluation of an endophytic antagonistic yeast for the control of gray mold (Botrytis cinerea) in apple and mechanisms of action. Yu X; Zhang K; Liu J; Zhao Z; Guo B; Wang X; Xiang W; Zhao J Food Microbiol; 2024 Oct; 123():104583. PubMed ID: 39038889 [TBL] [Abstract][Full Text] [Related]
8. Indigenous Yeasts for the Biocontrol of Sepúlveda X; Vargas M; Vero S; Zapata N J Fungi (Basel); 2023 May; 9(5):. PubMed ID: 37233268 [TBL] [Abstract][Full Text] [Related]
9. Biocontrol Ability and Action Mechanism of Starmerella bacillaris (Synonym Candida zemplinina) Isolated from Wine Musts against Gray Mold Disease Agent Botrytis cinerea on Grape and Their Effects on Alcoholic Fermentation. Lemos WJ; Bovo B; Nadai C; Crosato G; Carlot M; Favaron F; Giacomini A; Corich V Front Microbiol; 2016; 7():1249. PubMed ID: 27574517 [TBL] [Abstract][Full Text] [Related]
10. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
11. Potential Role of Exoglucanase Genes (WaEXG1 and WaEXG2) in the Biocontrol Activity of Wickerhamomyces anomalus. Parafati L; Cirvilleri G; Restuccia C; Wisniewski M Microb Ecol; 2017 May; 73(4):876-884. PubMed ID: 27816988 [TBL] [Abstract][Full Text] [Related]
12. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays. Parafati L; Vitale A; Restuccia C; Cirvilleri G Food Microbiol; 2017 May; 63():191-198. PubMed ID: 28040168 [TBL] [Abstract][Full Text] [Related]
13. Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with several sdhB and the cytb G143A mutations. Veloukas T; Kalogeropoulou P; Markoglou AN; Karaoglanidis GS Phytopathology; 2014 Apr; 104(4):347-56. PubMed ID: 24168041 [TBL] [Abstract][Full Text] [Related]
14. The microbial ecology of wine grape berries. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021 [TBL] [Abstract][Full Text] [Related]
15. Real-time PCR assays for the quantification of native yeast DNA in grape berry and fermentation extracts. Wang X; Glawe DA; Weller DM; Okubara PA J Microbiol Methods; 2020 Jan; 168():105794. PubMed ID: 31783049 [TBL] [Abstract][Full Text] [Related]
16. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype. Ciliberti N; Fermaud M; Roudet J; Rossi V Phytopathology; 2015 Aug; 105(8):1090-6. PubMed ID: 26218433 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Rhodosporidium fluviale as biocontrol agent against Botrytis cinerea on apple fruit. Sansone G; Lambrese Y; Calvente V; Fernández G; Benuzzi D; Sanz Ferramola M Lett Appl Microbiol; 2018 May; 66(5):455-461. PubMed ID: 29495073 [TBL] [Abstract][Full Text] [Related]
18. Quantification of Si Ammour M; Fedele G; Morcia C; Terzi V; Rossi V Phytopathology; 2019 Jul; 109(7):1312-1319. PubMed ID: 30785375 [TBL] [Abstract][Full Text] [Related]
19. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Calvo-Garrido C; Viñas I; Elmer PA; Usall J; Teixidó N Pest Manag Sci; 2014 Apr; 70(4):595-602. PubMed ID: 23744713 [TBL] [Abstract][Full Text] [Related]