These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29334647)

  • 1. Time-resolved decoding of planned delayed and immediate prehension movements.
    Ariani G; Oosterhof NN; Lingnau A
    Cortex; 2018 Feb; 99():330-345. PubMed ID: 29334647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding Internally and Externally Driven Movement Plans.
    Ariani G; Wurm MF; Lingnau A
    J Neurosci; 2015 Oct; 35(42):14160-71. PubMed ID: 26490857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding motor imagery and action planning in the early visual cortex: Overlapping but distinct neural mechanisms.
    Monaco S; Malfatti G; Culham JC; Cattaneo L; Turella L
    Neuroimage; 2020 Sep; 218():116981. PubMed ID: 32454207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Dynamics of Variable Grasp-Movement Preparation in the Macaque Frontoparietal Network.
    Michaels JA; Dann B; Intveld RW; Scherberger H
    J Neurosci; 2018 Jun; 38(25):5759-5773. PubMed ID: 29798892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor planning brings human primary somatosensory cortex into action-specific preparatory states.
    Ariani G; Pruszynski JA; Diedrichsen J
    Elife; 2022 Jan; 11():. PubMed ID: 35018886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.
    Shen G; Zhang J; Wang M; Lei D; Yang G; Zhang S; Du X
    Eur J Neurosci; 2014 Jun; 39(12):2071-82. PubMed ID: 24661456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. fMRI studies of the sensory and motor areas involved in movement.
    Freund HJ
    Adv Exp Med Biol; 2002; 508():389-95. PubMed ID: 12171134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding sequential finger movements from preparatory activity in higher-order motor regions: a functional magnetic resonance imaging multi-voxel pattern analysis.
    Nambu I; Hagura N; Hirose S; Wada Y; Kawato M; Naito E
    Eur J Neurosci; 2015 Nov; 42(10):2851-9. PubMed ID: 26342210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical activity in multiple motor areas during sequential finger movements: an application of independent component analysis.
    Kansaku K; Muraki S; Umeyama S; Nishimori Y; Kochiyama T; Yamane S; Kitazawa S
    Neuroimage; 2005 Nov; 28(3):669-81. PubMed ID: 16054844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the temporal nature of hemodynamic responses of cortical motor areas using functional MRI.
    Samuel M; Williams SC; Leigh PN; Simmons A; Chakraborti S; Andrew CM; Friston KJ; Goldstein LH; Brooks DJ
    Neurology; 1998 Dec; 51(6):1567-75. PubMed ID: 9855503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding intransitive actions in primary motor cortex using fMRI: toward a componential theory of 'action primitives' in motor cortex.
    Shay EA; Chen Q; Garcea FE; Mahon BZ
    Cogn Neurosci; 2019 Jan; 10(1):13-19. PubMed ID: 29544397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurophysiology of prehension. II. Response diversity in primary somatosensory (S-I) and motor (M-I) cortices.
    Gardner EP; Ro JY; Babu KS; Ghosh S
    J Neurophysiol; 2007 Feb; 97(2):1656-70. PubMed ID: 17093113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action preparation shapes processing in early visual cortex.
    Gutteling TP; Petridou N; Dumoulin SO; Harvey BM; Aarnoutse EJ; Kenemans JL; Neggers SF
    J Neurosci; 2015 Apr; 35(16):6472-80. PubMed ID: 25904798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different effects of the mirror illusion on motor and somatosensory processing.
    Fritzsch C; Wang J; Dos Santos LF; Mauritz KH; Brunetti M; Dohle C
    Restor Neurol Neurosci; 2014; 32(2):269-80. PubMed ID: 24240987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical activation associated with motor preparation can be used to predict the freely chosen effector of an upcoming movement and reflects response time: An fMRI decoding study.
    Hirose S; Nambu I; Naito E
    Neuroimage; 2018 Dec; 183():584-596. PubMed ID: 30165249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Working memory maintenance of grasp-target information in the human posterior parietal cortex.
    Fiehler K; Bannert MM; Bischoff M; Blecker C; Stark R; Vaitl D; Franz VH; Rösler F
    Neuroimage; 2011 Feb; 54(3):2401-11. PubMed ID: 20932912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations.
    Freud E; Macdonald SN; Chen J; Quinlan DJ; Goodale MA; Culham JC
    Cortex; 2018 Jan; 98():34-48. PubMed ID: 28431740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracortical Microstimulation Maps of Motor, Somatosensory, and Posterior Parietal Cortex in Tree Shrews (Tupaia belangeri) Reveal Complex Movement Representations.
    Baldwin MK; Cooke DF; Krubitzer L
    Cereb Cortex; 2017 Feb; 27(2):1439-1456. PubMed ID: 26759478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dynamics of Brain Activity during Voluntary Movement: fMRI Study].
    Sedov AS; Devetiarov DA; Semenova UN; Zavyalova VV; Ushakov VL; Medvednik RS; Ublinsky MV; Akhadov TA; Semenova NA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2015; 65(4):436-45. PubMed ID: 26601503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.