BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 29334758)

  • 1. Anticancer Thiosemicarbazones: Chemical Properties, Interaction with Iron Metabolism, and Resistance Development.
    Heffeter P; Pape VFS; Enyedy ÉA; Keppler BK; Szakacs G; Kowol CR
    Antioxid Redox Signal; 2019 Mar; 30(8):1062-1082. PubMed ID: 29334758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methemoglobin formation by triapine, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and other anticancer thiosemicarbazones: identification of novel thiosemicarbazones and therapeutics that prevent this effect.
    Quach P; Gutierrez E; Basha MT; Kalinowski DS; Sharpe PC; Lovejoy DB; Bernhardt PV; Jansson PJ; Richardson DR
    Mol Pharmacol; 2012 Jul; 82(1):105-14. PubMed ID: 22508546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer Cell Resistance Against the Clinically Investigated Thiosemicarbazone COTI-2 Is Based on Formation of Intracellular Copper Complex Glutathione Adducts and ABCC1-Mediated Efflux.
    Bormio Nunes JH; Hager S; Mathuber M; Pósa V; Roller A; Enyedy ÉA; Stefanelli A; Berger W; Keppler BK; Heffeter P; Kowol CR
    J Med Chem; 2020 Nov; 63(22):13719-13732. PubMed ID: 33190481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): a combined experimental and theoretical study.
    Popović-Bijelić A; Kowol CR; Lind ME; Luo J; Himo F; Enyedy EA; Arion VB; Gräslund A
    J Inorg Biochem; 2011 Nov; 105(11):1422-31. PubMed ID: 21955844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triapine Derivatives Act as Copper Delivery Vehicles to Induce Deadly Metal Overload in Cancer Cells.
    Ohui K; Stepanenko I; Besleaga I; Babak MV; Stafi R; Darvasiova D; Giester G; Pósa V; Enyedy EA; Vegh D; Rapta P; Ang WH; Popović-Bijelić A; Arion VB
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32961653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine(®)-metal complexes.
    Chitambar CR; Antholine WE
    Antioxid Redox Signal; 2013 Mar; 18(8):956-72. PubMed ID: 22900955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of metal coordination on cytotoxicity of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (triapine) and novel insights into terminal dimethylation.
    Kowol CR; Trondl R; Heffeter P; Arion VB; Jakupec MA; Roller A; Galanski MS; Berger W; Keppler BK
    J Med Chem; 2009 Aug; 52(16):5032-43. PubMed ID: 19637923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.
    Park KC; Fouani L; Jansson PJ; Wooi D; Sahni S; Lane DJ; Palanimuthu D; Lok HC; Kovačević Z; Huang ML; Kalinowski DS; Richardson DR
    Metallomics; 2016 Sep; 8(9):874-86. PubMed ID: 27334916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex formation and cytotoxicity of Triapine derivatives: a comparative solution study on the effect of the chalcogen atom and NH-methylation.
    Enyedy ÉA; May NV; Pape VFS; Heffeter P; Szakács G; Keppler BK; Kowol CR
    Dalton Trans; 2020 Dec; 49(46):16887-16902. PubMed ID: 33185224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Copper Complex Stability and Slow Reduction Kinetics as Key Parameters for Improved Activity, Paraptosis Induction, and Impact on Drug-Resistant Cells of Anticancer Thiosemicarbazones.
    Hager S; Pape VFS; Pósa V; Montsch B; Uhlik L; Szakács G; Tóth S; Jabronka N; Keppler BK; Kowol CR; Enyedy ÉA; Heffeter P
    Antioxid Redox Signal; 2020 Aug; 33(6):395-414. PubMed ID: 32336116
    [No Abstract]   [Full Text] [Related]  

  • 12. The potent and novel thiosemicarbazone chelators di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone and 2-benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone affect crucial thiol systems required for ribonucleotide reductase activity.
    Yu Y; Suryo Rahmanto Y; Hawkins CL; Richardson DR
    Mol Pharmacol; 2011 Jun; 79(6):921-31. PubMed ID: 21389104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents.
    Merlot AM; Kalinowski DS; Kovacevic Z; Jansson PJ; Sahni S; Huang ML; Lane DJR; Lok H; Richardson DR
    Curr Med Chem; 2019; 26(2):302-322. PubMed ID: 28685681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding efficacy to anti-tumor efficacy.
    Serda M; Kalinowski DS; Mrozek-Wilczkiewicz A; Musiol R; Szurko A; Ratuszna A; Pantarat N; Kovacevic Z; Merlot AM; Richardson DR; Polanski J
    Bioorg Med Chem Lett; 2012 Sep; 22(17):5527-31. PubMed ID: 22858101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chelators at the cancer coalface: desferrioxamine to Triapine and beyond.
    Yu Y; Wong J; Lovejoy DB; Kalinowski DS; Richardson DR
    Clin Cancer Res; 2006 Dec; 12(23):6876-83. PubMed ID: 17145804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and biological evaluation of biotin-conjugated anticancer thiosemicarbazones and their iron(III) and copper(II) complexes.
    Kallus S; Uhlik L; van Schoonhoven S; Pelivan K; Berger W; Enyedy ÉA; Hofmann T; Heffeter P; Kowol CR; Keppler BK
    J Inorg Biochem; 2019 Jan; 190():85-97. PubMed ID: 30384010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Stepwise NH2-Methylation of Triapine on the Physicochemical Properties, Anticancer Activity, and Resistance Circumvention.
    Kowol CR; Miklos W; Pfaff S; Hager S; Kallus S; Pelivan K; Kubanik M; Enyedy ÉA; Berger W; Heffeter P; Keppler BK
    J Med Chem; 2016 Jul; 59(14):6739-52. PubMed ID: 27336684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative cytotoxic and biochemical effects of ligands and metal complexes of alpha-N-heterocyclic carboxaldehyde thiosemicarbazones.
    Saryan LA; Ankel E; Krishnamurti C; Petering DH; Elford H
    J Med Chem; 1979 Oct; 22(10):1218-21. PubMed ID: 513069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron chelators for the treatment of cancer.
    Yu Y; Gutierrez E; Kovacevic Z; Saletta F; Obeidy P; Suryo Rahmanto Y; Richardson DR
    Curr Med Chem; 2012; 19(17):2689-702. PubMed ID: 22455580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron Chelators: Development of Novel Compounds with High and Selective Anti-Tumour Activity.
    Kovacevic Z; Kalinowski DS; Lovejoy DB; Quach P; Wong J; Richardson DR
    Curr Drug Deliv; 2010 Jul; 7(3):194-207. PubMed ID: 20507267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.