These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29334868)

  • 1. Biomechanical analyses of synchronised swimming standard and contra-standard sculling.
    Gomes LE; Diogo V; Castro FAS; Vilas-Boas JP; Fernandes RJ; Figueiredo P
    Sports Biomech; 2019 Aug; 18(4):354-365. PubMed ID: 29334868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The suitability of Sanders' model for calculation of the propulsive force generated by the hands during sculling motion.
    Gomes LE; Boeira L; Loss JF
    J Sports Sci; 2017 May; 35(10):936-944. PubMed ID: 27400118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do elite artistic swimmers generate fluid forces by hand during sculling motions?
    Homma M; Okamoto Y; Takagi H
    Sports Biomech; 2023 Dec; 22(12):1764-1778. PubMed ID: 31718520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative evaluation of the high elbow technique in front crawl.
    Suito H; Nunome H; Ikegami Y
    J Sports Sci; 2017 Jul; 35(13):1264-1269. PubMed ID: 27540768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsteady hydrodynamic forces acting on a hand and its flow field during sculling motion.
    Takagi H; Shimada S; Miwa T; Kudo S; Sanders R; Matsuuchi K
    Hum Mov Sci; 2014 Dec; 38():133-42. PubMed ID: 25310026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symmetry of support scull and vertical position stability in synchronized swimming.
    Winiarski S; Dubiel-Wuchowicz K; Rutkowska-Kucharska A
    Acta Bioeng Biomech; 2013; 15(1):113-22. PubMed ID: 23957348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study between fully tethered and free swimming at different paces of swimming in front crawl.
    Samson M; Monnet T; Bernard A; Lacouture P; David L
    Sports Biomech; 2019 Dec; 18(6):571-586. PubMed ID: 29562831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between kinematics and undulatory underwater swimming performance.
    Higgs AJ; Pease DL; Sanders RH
    J Sports Sci; 2017 May; 35(10):995-1003. PubMed ID: 27431482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial Sensors in Swimming: Detection of Stroke Phases through 3D Wrist Trajectory.
    Cortesi M; Giovanardi A; Gatta G; Mangia AL; Bartolomei S; Fantozzi S
    J Sports Sci Med; 2019 Sep; 18(3):438-447. PubMed ID: 31427865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective Propulsion in Swimming: Grasping the Hydrodynamics of Hand and Arm Movements.
    van Houwelingen J; Schreven S; Smeets JB; Clercx HJ; Beek PJ
    J Appl Biomech; 2017 Feb; 33(1):87-100. PubMed ID: 27705060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of using paddles on hand propulsive forces and Froude efficiency in arm-stroke-only front-crawl swimming at various velocities.
    Tsunokawa T; Mankyu H; Takagi H; Ogita F
    Hum Mov Sci; 2019 Apr; 64():378-388. PubMed ID: 30861470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscular activations during repetitions of sculling movements up to exhaustion in swimming.
    Rouard AH; Billat RP; Deschodt V; Clarys JP
    Arch Physiol Biochem; 1997 Dec; 105(7):655-62. PubMed ID: 9693712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of hand paddles on the arm coordination in female front crawl swimmers.
    Gourgoulis V; Aggeloussis N; Kasimatis P; Vezos N; Antoniou P; Mavromatis G
    J Strength Cond Res; 2009 May; 23(3):735-40. PubMed ID: 19387407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of a quantitative parameter to evaluate swimming technique based on the maximal tethered swimming test.
    Soncin R; Mezêncio B; Ferreira JC; Rodrigues SA; Huebner R; Serrão JC; Szmuchrowski L
    Sports Biomech; 2017 Jun; 16(2):248-257. PubMed ID: 27998206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The key kinematic determinants of undulatory underwater swimming at maximal velocity.
    Connaboy C; Naemi R; Brown S; Psycharakis S; McCabe C; Coleman S; Sanders R
    J Sports Sci; 2016; 34(11):1036-43. PubMed ID: 26367778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracyclic Variation of Force and Swimming Performance.
    Morouço PG; Barbosa TM; Arellano R; Vilas-Boas JP
    Int J Sports Physiol Perform; 2018 Aug; 13(7):897-902. PubMed ID: 29283692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coaching points for the technique of the eggbeater kick in synchronized swimming based on three-dimensional motion analysis.
    Homma M; Homma M
    Sports Biomech; 2005 Jan; 4(1):73-87. PubMed ID: 15807378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Front-crawl stroke descriptors variability assessment for skill characterisation.
    Dadashi F; Millet GP; Aminian K
    J Sports Sci; 2016 Aug; 34(15):1405-12. PubMed ID: 26595663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting centre of mass horizontal speed in low to severe swimming intensities with linear and non-linear models.
    de Jesus K; de Jesus K; Ayala HVH; Dos Santos Coelho L; Vilas-Boas JP; Fernandes RJP
    J Sports Sci; 2019 Jul; 37(13):1512-1520. PubMed ID: 30724700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a high-intensity swim test on kinematic parameters in high-level athletes.
    Aujouannet YA; Bonifazi M; Hintzy F; Vuillerme N; Rouard AH
    Appl Physiol Nutr Metab; 2006 Apr; 31(2):150-8. PubMed ID: 16604133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.