These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29335072)

  • 1. Rebound excitability mediates motor abnormalities in Parkinson's disease.
    Kim J; Kim D
    BMB Rep; 2018 Jan; 51(1):3-4. PubMed ID: 29335072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory Basal Ganglia Inputs Induce Excitatory Motor Signals in the Thalamus.
    Kim J; Kim Y; Nakajima R; Shin A; Jeong M; Park AH; Jeong Y; Jo S; Yang S; Park H; Cho SH; Cho KH; Shim I; Chung JH; Paik SB; Augustine GJ; Kim D
    Neuron; 2017 Aug; 95(5):1181-1196.e8. PubMed ID: 28858620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell Type-Specific Decrease of the Intrinsic Excitability of Motor Cortical Pyramidal Neurons in Parkinsonism.
    Chen L; Daniels S; Kim Y; Chu HY
    J Neurosci; 2021 Jun; 41(25):5553-5565. PubMed ID: 34006589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory waveform sharpness asymmetry changes in motor thalamus and motor cortex in a rat model of Parkinson's disease.
    Parr-Brownlie LC; Itoga CA; Walters JR; Underwood CF
    Exp Neurol; 2022 Aug; 354():114089. PubMed ID: 35461830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease.
    Marsden CD; Obeso JA
    Brain; 1994 Aug; 117 ( Pt 4)():877-97. PubMed ID: 7922472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered Thalamocortical Signaling in a Mouse Model of Parkinson's Disease.
    Swanson OK; Yevoo PE; Richard D; Maffei A
    J Neurosci; 2023 Aug; 43(34):6021-6034. PubMed ID: 37527923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo electrophysiology of nigral and thalamic neurons in alpha-synuclein-overexpressing mice highlights differences from toxin-based models of parkinsonism.
    Lobb CJ; Zaheer AK; Smith Y; Jaeger D
    J Neurophysiol; 2013 Dec; 110(12):2792-805. PubMed ID: 24068758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats.
    Belluscio MA; Riquelme LA; Murer MG
    Eur J Neurosci; 2007 May; 25(9):2791-804. PubMed ID: 17561844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease.
    Maurice N; Deltheil T; Melon C; Degos B; Mourre C; Amalric M; Kerkerian-Le Goff L
    PLoS One; 2015; 10(11):e0142838. PubMed ID: 26571268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopaminergic dysbalance in distinct basal ganglia neurocircuits: implications for the pathophysiology of Parkinson's disease, schizophrenia and attention deficit hyperactivity disorder.
    Mehler-Wex C; Riederer P; Gerlach M
    Neurotox Res; 2006 Dec; 10(3-4):167-79. PubMed ID: 17197367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Parkinsonian thalamic activity to restoring thalamic relay using deep brain stimulation: new insights from computational modeling.
    Meijer HG; Krupa M; Cagnan H; Lourens MA; Heida T; Martens HC; Bour LJ; van Gils SA
    J Neural Eng; 2011 Dec; 8(6):066005. PubMed ID: 21990162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mean-field modeling of the basal ganglia-thalamocortical system. II Dynamics of parkinsonian oscillations.
    van Albada SJ; Gray RT; Drysdale PM; Robinson PA
    J Theor Biol; 2009 Apr; 257(4):664-88. PubMed ID: 19154745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalizing performance limitations of relay neurons: application to Parkinson's disease.
    Agarwal R; Santaniello S; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6573-6. PubMed ID: 25571502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delta oscillations are a robust biomarker of dopamine depletion severity and motor dysfunction in awake mice.
    Whalen TC; Willard AM; Rubin JE; Gittis AH
    J Neurophysiol; 2020 Aug; 124(2):312-329. PubMed ID: 32579421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in neuronal activity of cortico-basal ganglia-thalamic networks induced by acute dopaminergic manipulations in rats.
    Ivica N; Richter U; Sjöbom J; Brys I; Tamtè M; Petersson P
    Eur J Neurosci; 2018 Feb; 47(3):236-250. PubMed ID: 29250896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basal ganglia and cortical control of thalamic rebound spikes.
    Nejad MM; Rotter S; Schmidt R
    Eur J Neurosci; 2021 Apr; ():. PubMed ID: 33914390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dysfunctional and compensatory synaptic plasticity in Parkinson's disease.
    Schroll H; Vitay J; Hamker FH
    Eur J Neurosci; 2014 Feb; 39(4):688-702. PubMed ID: 24313650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased functional connectivity of thalamic subdivisions in patients with Parkinson's disease.
    Owens-Walton C; Jakabek D; Power BD; Walterfang M; Velakoulis D; van Westen D; Looi JCL; Shaw M; Hansson O
    PLoS One; 2019; 14(9):e0222002. PubMed ID: 31483847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bursting activity of substantia nigra pars reticulata neurons in mouse parkinsonism in awake and anesthetized states.
    Lobb CJ; Jaeger D
    Neurobiol Dis; 2015 Mar; 75():177-85. PubMed ID: 25576395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement.
    Contreras-Vidal JL; Stelmach GE
    Biol Cybern; 1995 Oct; 73(5):467-76. PubMed ID: 7578481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.