These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29335412)

  • 61. The arrestin-bound conformation and dynamics of the phosphorylated carboxy-terminal region of rhodopsin.
    Kisselev OG; McDowell JH; Hargrave PA
    FEBS Lett; 2004 Apr; 564(3):307-11. PubMed ID: 15111114
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody.
    Ring AM; Manglik A; Kruse AC; Enos MD; Weis WI; Garcia KC; Kobilka BK
    Nature; 2013 Oct; 502(7472):575-579. PubMed ID: 24056936
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling.
    Beautrait A; Paradis JS; Zimmerman B; Giubilaro J; Nikolajev L; Armando S; Kobayashi H; Yamani L; Namkung Y; Heydenreich FM; Khoury E; Audet M; Roux PP; Veprintsev DB; Laporte SA; Bouvier M
    Nat Commun; 2017 Apr; 8():15054. PubMed ID: 28416805
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Functional dynamics of deuterated β2 -adrenergic receptor in lipid bilayers revealed by NMR spectroscopy.
    Kofuku Y; Ueda T; Okude J; Shiraishi Y; Kondo K; Mizumura T; Suzuki S; Shimada I
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13376-9. PubMed ID: 25284766
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Understanding the effects on constitutive activation and drug binding of a D130N mutation in the β2 adrenergic receptor via molecular dynamics simulation.
    Zhu Y; Yuan Y; Xiao X; Zhang L; Guo Y; Pu X
    J Mol Model; 2014 Nov; 20(11):2491. PubMed ID: 25342155
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Phosphorylation-dependent conformational changes of arrestin in the rhodopsin-arrestin complex.
    Wang D; Liu X; Liu J; Song C
    Phys Chem Chem Phys; 2020 May; 22(17):9330-9338. PubMed ID: 32309842
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Revealing Conformational Transitions in G-Protein-Coupled Receptor Rhodopsin upon Phosphorylation.
    Jatana N; Aswin SK; Rathore S; Thukral L
    Biochemistry; 2020 Jan; 59(3):297-302. PubMed ID: 31846310
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanism of allosteric regulation of β
    Manna M; Niemelä M; Tynkkynen J; Javanainen M; Kulig W; Müller DJ; Rog T; Vattulainen I
    Elife; 2016 Nov; 5():. PubMed ID: 27897972
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling.
    Manglik A; Kim TH; Masureel M; Altenbach C; Yang Z; Hilger D; Lerch MT; Kobilka TS; Thian FS; Hubbell WL; Prosser RS; Kobilka BK
    Cell; 2015 May; 161(5):1101-1111. PubMed ID: 25981665
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Phosphorylation of β-arrestin2 at Thr
    Cassier E; Gallay N; Bourquard T; Claeysen S; Bockaert J; Crépieux P; Poupon A; Reiter E; Marin P; Vandermoere F
    Elife; 2017 Feb; 6():. PubMed ID: 28169830
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A structural snapshot of the rhodopsin-arrestin complex.
    Kang Y; Gao X; Zhou XE; He Y; Melcher K; Xu HE
    FEBS J; 2016 Mar; 283(5):816-21. PubMed ID: 26467309
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Analysis of temporal patterns of GPCR-β-arrestin interactions using split luciferase-fragment complementation.
    Hattori M; Tanaka M; Takakura H; Aoki K; Miura K; Anzai T; Ozawa T
    Mol Biosyst; 2013 May; 9(5):957-64. PubMed ID: 23302795
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of G protein-coupled receptor regulation in antisense mRNA-expressing cells with reduced arrestin levels.
    Mundell SJ; Loudon RP; Benovic JL
    Biochemistry; 1999 Jul; 38(27):8723-32. PubMed ID: 10393547
    [TBL] [Abstract][Full Text] [Related]  

  • 74. β-Arrestin-biased AT1R stimulation promotes extracellular matrix synthesis in renal fibrosis.
    Wang Y; Huang J; Liu X; Niu Y; Zhao L; Yu Y; Zhou L; Lu L; Yu C
    Am J Physiol Renal Physiol; 2017 Jul; 313(1):F1-F8. PubMed ID: 28274926
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin.
    Manglik A; Kobilka B
    Curr Opin Cell Biol; 2014 Apr; 27():136-43. PubMed ID: 24534489
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural equilibrium underlying ligand-dependent activation of β
    Imai S; Yokomizo T; Kofuku Y; Shiraishi Y; Ueda T; Shimada I
    Nat Chem Biol; 2020 Apr; 16(4):430-439. PubMed ID: 31959965
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Detergent- and phospholipid-based reconstitution systems have differential effects on constitutive activity of G-protein-coupled receptors.
    Staus DP; Wingler LM; Pichugin D; Prosser RS; Lefkowitz RJ
    J Biol Chem; 2019 Sep; 294(36):13218-13223. PubMed ID: 31362983
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc.
    Staus DP; Hu H; Robertson MJ; Kleinhenz ALW; Wingler LM; Capel WD; Latorraca NR; Lefkowitz RJ; Skiniotis G
    Nature; 2020 Mar; 579(7798):297-302. PubMed ID: 31945772
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Exploring the free-energy landscape of GPCR activation.
    Alhadeff R; Vorobyov I; Yoon HW; Warshel A
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10327-10332. PubMed ID: 30257944
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Efficacy of the β₂-adrenergic receptor is determined by conformational equilibrium in the transmembrane region.
    Kofuku Y; Ueda T; Okude J; Shiraishi Y; Kondo K; Maeda M; Tsujishita H; Shimada I
    Nat Commun; 2012; 3():1045. PubMed ID: 22948827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.