These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Re: Jinjing Chen, Ilaria Guccini, Diletta Di Mitri, et al. Compartmentalized Activities of the Pyruvate Dehydrogenase Complex Sustain Lipogenesis in Prostate Cancer. Nat Genet 2018;50:219-28: Lipid Metabolism in Prostate Cancer: Expanding Patient Therapeutic Opportunities. Lavorgna G; Montorsi F; Salonia A Eur Urol; 2018 Jul; 74(1):e20-e21. PubMed ID: 29598985 [No Abstract] [Full Text] [Related]
3. Re: Compartmentalized Activities of the Pyruvate Dehydrogenase Complex Sustain Lipogenesis in Prostate Cancer. Atala A J Urol; 2018 Oct; 200(4):701-702. PubMed ID: 30227586 [No Abstract] [Full Text] [Related]
4. [Effect of thiamine on the activity of the pyruvate dehydrogenase complex in rat liver following stimulation of lipogenesis]. Parkhomenko IuM; Vovk AI; Protasova ZS; Chernysh IIu; Khalmuradov AG Ukr Biokhim Zh (1978); 1983; 55(4):408-14. PubMed ID: 6623667 [TBL] [Abstract][Full Text] [Related]
5. [Androgens and increased lipogenesis in prostate cancer. Cell biologic and clinical perspectives]. Verhoeven G Verh K Acad Geneeskd Belg; 2002; 64(3):189-95; discussion 195-6. PubMed ID: 12238242 [TBL] [Abstract][Full Text] [Related]
6. Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells. Loubière C; Goiran T; Laurent K; Djabari Z; Tanti JF; Bost F Oncotarget; 2015 Jun; 6(17):15652-61. PubMed ID: 26002551 [TBL] [Abstract][Full Text] [Related]
7. Methods to assess lipid accumulation in cancer cells. Sikkeland J; Jin Y; Saatcioglu F Methods Enzymol; 2014; 542():407-23. PubMed ID: 24862278 [TBL] [Abstract][Full Text] [Related]
8. Analysis of androgen-induced increase in lipid accumulation in prostate cancer cells. Sikkeland J; Lindstad T; Saatcioglu F Methods Mol Biol; 2011; 776():371-82. PubMed ID: 21796538 [TBL] [Abstract][Full Text] [Related]
9. Androgens, lipogenesis and prostate cancer. Swinnen JV; Heemers H; van de Sande T; de Schrijver E; Brusselmans K; Heyns W; Verhoeven G J Steroid Biochem Mol Biol; 2004 Nov; 92(4):273-9. PubMed ID: 15663990 [TBL] [Abstract][Full Text] [Related]
10. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Li J; Ren S; Piao HL; Wang F; Yin P; Xu C; Lu X; Ye G; Shao Y; Yan M; Zhao X; Sun Y; Xu G Sci Rep; 2016 Feb; 6():20984. PubMed ID: 26865432 [TBL] [Abstract][Full Text] [Related]
11. Kinetic analyses of the pyruvate dehydrogenase complex from Candida 107 (NCYC 911). Rajalakshmi KJ; Natraj CV Indian J Biochem Biophys; 1991; 28(5-6):389-94. PubMed ID: 1812072 [TBL] [Abstract][Full Text] [Related]
12. Intracellular mechanisms underlying lipid accumulation (white opaque substance) in gastric epithelial neoplasms: A pilot study of expression profiles of lipid-metabolism-associated genes. Enjoji M; Kohjima M; Ohtsu K; Matsunaga K; Murata Y; Nakamuta M; Imamura K; Tanabe H; Iwashita A; Nagahama T; Yao K J Gastroenterol Hepatol; 2016 Apr; 31(4):776-81. PubMed ID: 26513060 [TBL] [Abstract][Full Text] [Related]
13. Cell death of prostate cancer cells by specific amino acid restriction depends on alterations of glucose metabolism. Fu YM; Lin H; Liu X; Fang W; Meadows GG J Cell Physiol; 2010 Aug; 224(2):491-500. PubMed ID: 20432447 [TBL] [Abstract][Full Text] [Related]
14. Pyruvate dehydrogenase alpha 1 as a target of omega-3 polyunsaturated fatty acids in human prostate cancer through a global phosphoproteomic analysis. Zhao H; Pflug BR; Lai X; Wang M Proteomics; 2016 Sep; 16(17):2419-31. PubMed ID: 27357730 [TBL] [Abstract][Full Text] [Related]
15. Androgen control of lipid metabolism in prostate cancer: novel insights and future applications. Butler LM; Centenera MM; Swinnen JV Endocr Relat Cancer; 2016 May; 23(5):R219-27. PubMed ID: 27130044 [TBL] [Abstract][Full Text] [Related]
16. Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity. Dulloo AG; Gubler M; Montani JP; Seydoux J; Solinas G Int J Obes Relat Metab Disord; 2004 Dec; 28 Suppl 4():S29-37. PubMed ID: 15592483 [TBL] [Abstract][Full Text] [Related]
17. Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics. Deep G; Kumar R; Nambiar DK; Jain AK; Ramteke AM; Serkova NJ; Agarwal C; Agarwal R Mol Carcinog; 2017 Mar; 56(3):833-848. PubMed ID: 27533043 [TBL] [Abstract][Full Text] [Related]
18. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Brohée L; Demine S; Willems J; Arnould T; Colige AC; Deroanne CF Oncotarget; 2015 May; 6(13):11264-80. PubMed ID: 25834103 [TBL] [Abstract][Full Text] [Related]
19. Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5. Mitra R; Le TT; Gorjala P; Goodman OB BMC Cancer; 2017 Sep; 17(1):631. PubMed ID: 28877685 [TBL] [Abstract][Full Text] [Related]
20. Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis. O'Brien AJ; Villani LA; Broadfield LA; Houde VP; Galic S; Blandino G; Kemp BE; Tsakiridis T; Muti P; Steinberg GR Biochem J; 2015 Jul; 469(2):177-87. PubMed ID: 25940306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]